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Announcements!

e Join Piazza. Read the Welcome Post Seltd Lo vp Shosd ‘/,v,
e Lecture is posted under “Media Gallery” in bCourses [yed pa Uemle.

e Evelyn's 6-7 pm discussion is now hybrid
e Signup and attend discussion

e HW1and Vitamin 1 have been released, due Thu (grace period Friday)
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What is a proof? Pzx 957, =&

A proof is a finite list of statements, each of which is logically implied by the
previous statement, to establish the truth of some proposition.

The power here is that using finite statements, we can guarantee the truth of a
statement with infinitely many cases.

Po A Jur\g  lockye

%

Advice: When writing proofs, imagine a very skeptical friend is reading over
your proof who questions every statement you make.

Since you'e learning, try to be more formal in your proof writing
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How to prove things?

Structure How to generally prove it
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You can also replace the proposition to be proved with something logically equivalent that has a different structure.

Al T Y
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Direct Proof (Example 1)

Theorem: For every natural number there is a natural number greater than it

Vn € N,dm € N(m > n)

Proof:
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Direct Proof (Example 2) p=a

Definition: For a,b € Z we say a|b 1ff Elq & Z such that b = aq

Theorem: For any a,b,c € Z if a|b and alc then a|(b — c)
Proof:

Lex eub, ¢ €% be M‘b&w? o cggae
alb ook alc. So, by Defirbis

b=>oq a C=Ag, o S 3,4 6Z
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Proof by Contraposition

Definition: n € Z is even if Jdk € Z such that n = 2k
Definition: n € Z is odd if dk € Z such that n =2k + 1

Theorem: For every n € Z if n?_is even, then so is 1. 154
Proof: r X

Lex W be an t'n%uf‘. We wi proceedt by
Corlacposdion s Fuow Het L N is 029
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Proof by Cases (Example 1)

Theorem: For all n € N, 3|(n3 —n) Goal : P
Proof: Mokt ¢ Ry NB, oo
Lo— w & 1M e R =
Core L A=3C e N Qo L TP
no-—n = (YA (a1
S 3n(3u-Dlre))
L/Z:W—J pvs  3(n3-y
Cf_‘i}: Vo= 34—,
n3-n = @u—:)(su-,—t)(&y—o
(> 31a3-u

Crse 2 V= ket
n3en = () rti=d Cuvie)

i (> 3|n3i-—n
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Proof by Cases (Example 2) fe& it w:-«c‘;

Defigition: A real ouml ional if £ 7. such t] n

and r = 2. Otherwise, r is irrational.
Theorem: There exist irrational z and y such that z¥ is rational.
Proof: - -

Caze 1 (T (5 fotoral. Tha, we aw dor, x=y-J3
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Prootf by Contradiction

A proof by contradiction proves a proposition “P” by first assuming “not P” is
true. That is, the opposite of P is true.

Then, it follows logical steps to arrive at a contradiction by proving both some

proposition “R” and “not R”. = _
P<=>RA-R=FE ndal
Why does this work? Y
Goal i P P | 7P| FlaPor T=F
Meded . Agoue =P ) [T; = F{ T T|r)Top
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Proof by Contradiction (Example 1) = 21&; I~

[ Definition: A real number r is rational if there are p,q € 7Z such that ¢ # 0
and r = %’. Otherwise, r is irrational.

ves)
Theorem: /2 is irrational ghowe. N0 con
Proof: 7 P/% é’achr‘
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Proof by Contradiction (Example 2) NOT COVERED

Theorem: There’s infinite prime numbers DU Q ( N (fz LE C TUKE
Proof:
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Tnece rrect—Proof

Theorem: [ = 2_
Proof: Fay »:_; v LNome
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Summary Not covepen py P& LEcToeg

Proof Technique @ General Procedure
Direct Proof Qool 1 PR Metod: Asswe P
! 3eps
Conclode. O
Proofby God @ P2 KR MeAled - proce 28 = 7P
contraposition
Proof by Goa\ : P Metlod:  Assua 27
contradiction Prove R
PpA'ﬁL 7R
Proof by cases oo\ : P Poted ¢ Suow By Y. VR, & tve
Show PR(=7 P
G\AO\') A n> P
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Few notes about what we did today

Write full proofs in your homework like we did today, but on discussion you can just write an
outline /sketch of the proof.

No one gets the complete proof immediately, there’s a lot of scratch work and thinking before you
can write the proof.

Remember! Every step in your proof must be justified and follow from previous steps.

Usually how things go:
1. Think about problem
2. Do some scratch work
3. Come up with solution
4. Try to write a proof
5. Realize solution is wrong
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FAQ
How do I get started?

Think about the definitions that may be relevant. Maybe a theorem or lemma
that was in the notes.

I'm stuck?

Try doing a bit of scratch work to see if you missed some pattern. Read over
what you currently have in the proof. Try proving an easier statement or an
intermediary statement.

Is my proof correct?

Question every statement. Does it follow from a definition or previous
statement?

UC Berkeley EECS 70 - Tarang Srivastava Lecture 1B - Slide 16



