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Given ___, how many ___ are there?



100 vs 100!

• 100! ≈ 10158

• Atoms in the observable universe:
• ≈ 1080



Basis of counting: set cardinality

Definition. The cardinality of a set 𝑆, denoted |𝑆|, is given by 
the unique integer 𝑛 such that:

There exists a bijective map f: 𝑆↔ {1, … , 𝑛}.

(Fancy way of saying: just count up the elements)

• Shorthand: 𝑛 ≔ {1,… , 𝑛}.



Fundamentals: cardinality rules

Let 𝐴, 𝐵 ⊂ 𝑆. Then the following cardinality rules hold:

1. Addition: If 𝐴 ∩ 𝐵 = ∅ , then 𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

• Proof. Let 𝑛 ≔ 𝐴 ,𝑚 ≔ 𝐵 . We can construct 𝐴↔ 𝑛 and 𝐵 ↔ {𝑛 +
1,… , 𝑛 + 𝑚}, and further 𝐴 ∪ 𝐵 ↔ {1,… , 𝑛 + 𝑚}.

2. Subtraction: If 𝐵 ⊂ 𝐴, then 𝐴 − 𝐵 = 𝐴 − |𝐵|.

• Proof. 𝐴 = (𝐴 − 𝐵) ∪ 𝐵 is a disjoint union, thus 𝐴 = 𝐴 − 𝐵 + |𝐵|.



Generalized addition: inclusion/exclusion

For general 𝐴, 𝐵 ⊂ 𝑆, we have that 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|.

• Proof. Note that 𝐴 ∪ 𝐵 − 𝐴 ∩ 𝐵 is a disjoint union by 
construction, and that 𝐴 ∪ 𝐵 − 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵. Since 𝐴 ∩ 𝐵 ⊂ 𝐵, we 
conclude that 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 .



Set multiplication: outer product

Definition. Let 𝐴, 𝐵 be sets. The outer product 𝐴 × 𝐵 is the set of 
ordered pairs (𝑎, 𝑏) for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.

We then get the following product rule for set cardinalities:

𝐴 × 𝐵 = 𝐴 ⋅ 𝐵 .

• Proof (sketch) Dictionary ordering. Enumerate 𝐴 and 𝐵, then count 
out all 𝑏 ∈ 𝐵 for the first 𝑎 ∈ 𝐴, then for the 2nd 𝑎 ∈ 𝐴, etc…



“Set division”: the quotient set

Definition. Let 𝐴 be a set, and ~ an equivalence relation over 
𝐴. The set A modulo ~, denoted 𝐴/~, is the set of equivalence 
classes of 𝐴 with respect to ~.

Example. Define 𝐴 ≔ {1,… , 10}, and the equivalence relation 
𝑎 ∼ 𝑏 ≔ 𝑎 ≡ 𝑏 (mod 2). Then 𝐴/∼ = {{1,3,5,7,9}, {2,4,6,8,10}}, 
and 𝐴/∼ = 2.



Quotient sets cardinality rule

Let 𝐴 be a set and ∼ an equivalence relation over 𝐴. If every 
equivalence class has the same cardinality, denoted | ∼ |, then the 
following holds:

𝐴/∼ =
|𝐴|

|∼|
.

Proof. (Sketch) Note that we can write elements 𝑎 ∈ 𝐴 as an 
outer product 𝑎 = (𝑒, 𝑓), where 𝑒 denotes the equivalence class of 
𝑎 and 𝑓 denotes the membership of 𝑎 within 𝑒. In this fashion, we 
can construct 𝐴↔ (𝐴/∼) × (∼), and conclude 𝐴 = |𝐴/∼ || ∼ |.



Basic cardinality rules

1. Addition: If 𝐴 ∩ 𝐵 = ∅ , then 𝐴 ∪ 𝐵 = 𝐴 + |𝐵|.

• General addition: 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∩ 𝐵 .

2. Subtraction: If 𝐵 ⊂ 𝐴, then 𝐴/𝐵 = 𝐴 − |𝐵|.

3. Multiplication: 𝐴 × 𝐵 = 𝐴 |𝐵|.

4. Division: If ∼ divides 𝐴 evenly, then 𝐴/∼ =
|𝐴|

|∼|
.



Principle of inclusion-exclusion

Multi-addition: 

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛

−1 𝑘−1 ෍

𝑆⊂{1,…,𝑛}∶|𝑆|=𝑘

∩𝑖∈𝑆 𝐴𝑖



Counting sequences



Sequences with replacement

Example: how many possible outcomes from flipping a coin 3 times?

Let 𝐴 be a set of items to choose from. The space of 𝑘-long 
sequences of elements from 𝐴 can be represented by the outer 
product space 𝐴 ×⋯× 𝐴 (𝑘 copies).

• There are then 𝐴 𝑘 sequences of 𝑘 choices from 𝐴 (with 
replacement).



Sequences without replacement

Example: how many possible 5 card hands from a standard deck?

• Need a different model, since e.g. (1,1, … , 1) no longer a valid choice.

Solution: model ordered pairs as choices from remaining altered set. 
For example, 1,1,1,1 corresponds to the cards (A, 2, 3, 4).

• Yields an outer product space 𝑛 × 𝑛 − 1 ×⋯× [𝑛 − 𝑘 − 1 ], 
which has 𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 + 1 =

𝑛!

(𝑛−𝑘)!
elements.



“First rule of counting”

If there are 𝑛𝑖 choices to make at step 𝑖, the total number of ways 
to make a sequence of 𝑘 choices is 𝑛1 ⋅ 𝑛2⋯𝑛𝑘.



Counting orderings



Formalizing an ordering

Definition. Let A be a set, where 𝑛 ≔ 𝐴 . An ordering of the 
set 𝐴 is a bijective map 𝑓: 𝐴 → {1,…𝑛}. The order of an element 
𝑎 is then given by 𝑓 𝑎 .

Central question: for a set 𝐴, how many orderings are there?

• Note: we can sufficiently count the orderings of the sets {1, … , 𝑛}.



Number of permutations.

Theorem. The number of orderings of the set {1, … , 𝑛} is 𝑛!.

Proof intuition. Note that for any permutation, the element 1
has to be sent somewhere. For each position 1 is sent to, every 
permutation of the remaining 𝑛 − 1 elements is a new 
permutation. As there are 𝑛 positions to place 1, we then get 
𝑛 𝑛 − 1 ! total permutations.



Number of permutations.

Theorem. The number of orderings of the set {1, … , 𝑛} is 𝑛!.

Proof. We proceed via induction. Denote 𝑃𝑛 the set of orderings 
of {1, … , 𝑛}. There exists only one bijective map between {1} and 
itself, so |𝑃1| = 1 and the base case holds.

Assume {1, … , 𝑛 − 1} has 𝑛 − 1 ! orderings. Each 𝑓 ∶ {1,… , 𝑛} →
{1, … , 𝑛} can be split into 𝑓 = (𝑓 1 , (𝑓 2 ,… , 𝑓(𝑛))), thus 𝑃𝑛 ↔
[𝑛] × 𝑃𝑛−1, and 𝑃𝑛 = 𝑛 ⋅ 𝑃𝑛−1 = 𝑛 𝑛 − 1 ! = 𝑛!.



Deriving the combinations formula

Question: from a set of 𝑛 items, how many ways to choose 𝑘 of them?

• More formally: how many subsets of size 𝑘?

Idea: model a choice as the first 𝑘 elements of an ordering.

• E.g. {5,1,2 | 4,3} represents the choice {1,2,5} from {1, … , 5}.
• Note the ordering of the choices does not matter.



Deriving the combinations formula

We can represent the space of size-𝑘 choices from a set of 𝑛 elements 
as the following quotient space:

𝑃𝑛
∼1×∼2

,

1. 𝑃𝑛: permutations of 𝑛 elements.

2. ∼1: permutations of the first 𝑘 elements.
• (order of choice doesn’t matter)

3. ∼2: permutations of the last n − 𝑘 elements.
• (order of elements we don’t choose doesn’t matter)



Deriving the combinations formula

𝑃𝑛
∼1×∼2

,

1. 𝑃𝑛: permutations of 𝑛 elements. 𝑃𝑛 = 𝑛!

2. ∼1: permutations of the first 𝑘 elements. ∼1 = 𝑘!

3. ∼2: permutations of the last n − 𝑘 elements. ∼2 = (𝑛 − 𝑘)!

|
𝑃𝑛

∼1×∼2
| =

𝑃𝑛

|∼1 ⋅|∼2
=

𝑛!

𝑘! 𝑛−𝑘 !
= 𝑛

𝑘
.



Choices when order matters

Only difference is the equivalence relation ∼1 no longer holds, so we 
just get the following:

|
𝑃𝑛

∼2
| =

𝑃𝑛

|∼2|
=

𝑛!

𝑛−𝑘 !



Other combinations examples

Example. Supposed we’re tasked with counting the number of 
ways to order the letters in the word “Mississippi”. There are 11 
letters, yielding 11! orderings. However, permuting the “i’s”, “s’s”, 
or “p’s” yield the same word. This generates 3 independent 
equivalence relations, which we can outer product together into a 
single equivalence relation:

|
𝑃11

∼𝑖×∼𝑠×∼𝑝
| =

𝑃11

|∼𝑖 ⋅|∼𝑠 ⋅ ∼𝑝
=

11!

4!4!2!
.



Other combinations examples

General practice on how to find the proper representation 𝐴/∼ for a 
“given __, how many __?” problem:

1. 𝑨: How am I representing a choice?

2. ∼: Which representations correspond to the same choice?



Combinatoric proof examples



Choosing fruits

Suppose we have a bin of infinite apples, oranges, and bananas. How many 
ways can we choose 5 fruits?

Solution 1. We can represent as a 5-tuple (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), where each 
𝑎𝑖 ∈ {1,2,3}. This set has 35 elements. Since order of the fruits chosen 
doesn’t matter, we have an equivalence of permutations of the 5 elements, 
whose classes are of size ∼ = 5!. Thus, the number of choices is given by:

|
𝑨

∼
| =

𝟑𝟓

𝟓!
.

(Issue: we’ve overcounted | ∼ |, which isn’t the same size everywhere)



Stars and bars

How many ways are there to order a collection of 𝑘 − 1 bars and 𝑛
stars?

Solution. 𝑛 + 𝑘 − 1 total items, equivalence of permutations of the 𝑛 stars 
and 𝑘 − 1 bars, yielding the following cardinality: 

(𝑛 + 𝑘 − 1)!

𝑛! 𝑘 − 1 !
=

𝑛 + 𝑘 − 1

𝑘 − 1
=

𝑛 + 𝑘 − 1

𝑛
.



Stars and bars

How many ways to put 𝑛 balls in 𝑘 bins?

Solution. “Balls”=stars and “bins” = (space between bars). Bijective 
relation to ordering of 𝑛 stars between 𝑘 − 1 bars. Thus, the number of 
ways is 𝑛+𝑘−1

𝑛
.



Stars and bars

How many ways to choose 5 fruits from 3 choices (apple, orange, 
banana)?

Solution. Bijective relation to balls and bins, where “bins” correspond 
to the type of fruit (apple, orange, banana), and “balls” are the 5 fruits 
chosen. Thus, the number of choices is 5+2

5
= 21.



Fun example: sorting algorithms

• Algorithmic lower bound for sorting: 𝑂 𝑛log(𝑛)
• Binary decision tree, must have at least 𝑛! leaves.

• 2𝑘 ≥ 𝑛!,  thus at least log(𝑛!) operations.

• Is 𝑂 log 𝑛! better than 𝑂 𝑛log(𝑛) ?
• Can use the gamma function Γ(𝑥) to derive Stirling’s approximation:

• 𝑛! ∼ 2𝜋𝑛
𝑛

𝑒

𝑛
.

• Conclusion: 𝑂 𝑛 log 𝑛 = 𝑂 log 𝑛! is the best a sorting algorithm 
can possibly do.


