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Countability

To infinity and beyond

Michael Psenka



Intro question

* As many even integers as odd integers? IE O
f:E >0 N > el 1 7125
7 4 =6

* As many even integers as integers?
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Countably infinite sets

Definition. The set S is said to be countable (countably infinite)
if there exists a biyjective map f: § 8. —2* 71 2 7 %
/Yy o

* In this sense, we can say that S and N have the same cardinality.
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What sets are countable?
Z"  d
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The smallest infinity

Theorem. Every infinite subset of a countable 3“%8 caunt&/e.
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Building upwards
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Building upwards

(34)

* Corollary. The following sets are countable: (L, 33
4

1. The rational numbers Q.

T¢ ¢ G)/O el &—»z*

2. The sets T** =7 X -+ X Z (k copies).
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Building upwards

Theorem. Any countable union of countable sets is countable.
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Another guestion
% =
» Denote ZY as the set of (countably) infinite sequences of integers.
Does there exist a bijection between the following:

(2,1,0,9,-,-1 ... 5

@
o X/ (/ 7k (4,21, é>


























































































































































































































































































The ceiling of countability

* The set {0,1}*N is not countable (uncountable).
(01,00, ) N « 21
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Uncountable sets

* Corollary. The following sets are uncountable:
1. The real numbers R{o, lj

~ > o,HO,_..

2. The set of subsets of N (denote

{;'4,1/ 7, :C),.--R
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Uncountable(?) sets

The set of finite subsets of N
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Uncountable sets

Any nonempty closed interval [a,b] € R is uncountable.

Question: “how to measure size of uncountable sets”?



Measure zero and countability

Measure theory: measuring the size of (almost) arbitrary sets.
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The Cantor set

The Cantor set Ny~ Cy 1s both measure zero and uncountable.
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