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Announcements!

e Everyone should've received an email confirming their exam format
e Ifyou're taking the exam in-person show up to Pimentel 1 at 5:50 pm
o Exam begins at 6 pm
e If youre taking the exam online you should have received a Zoom Link
o Follow the online proctoring instructions shared on Piazza
o Exam begins at 6 pm
o  Working past your allotted time (8pm for regular test takers) will be considered academic
misconduct

e Answer sheet will be available tomorrow morning. Remote test takers are
responsible for printing it out before the exam.
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Course Overview

Course Webpage: www.eecs70.0rg
Explains policies, calendar for OH, HW, midterm dates, schedule, etc

Course Format
Lecture — Mon-Thu 12:30-2p Dwinelle 155 (and live Zoom /recorded)
Discussion — Mon-Thu. Will cover content from that day’s lecture.

Office Hours — See eecs70.org /calendar for location and times. Submit
tickets on oh.eecs70.org
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Course Overview (cont.)

Software o) Cplary
bCourses — Lecture l‘@c_oqus
Gradescope — HWs and Vitamins
Piazza — Questions, Communications, Everything else!

Email: cs70-staff@berkeley.edu — Personal questions, extenuating
circumstances, etc

Top Bar Attendance Form — Attendance Credit

Weekly Post

On Piazza. It is required reading every week.
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Course Overview (cont.)

Check you are enrolled in these services

bCourses, Piazza, Gradescope. Please email cs70-staff@berkeley.edu if not
enrolled.

DSP

You should have received an email from Nikki Suzani. Please email us if you
have not.

Incomplete

If you are finishing an incomplete this semester please email us with the
conditions of your incomplete.
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Assignments :

92 o Dicuss .
Homework — released weekly on Saturday morning M {"\‘0”0 < Discussion Attendance | 5%
)
Due every Thursday. No penalty grace period until Friday W™ | Vitamin 5%
11:59 pm. Graded on accuracy.
_ Homework 20%
Material from last WTh and this MTue (/
. . : Midterm 30%
Vitamins — released weekly on Saturday morning
Due every Thursday. No penalty grace period until Friday Final 40%

11:59 pm Graded on accuracy. Instant feedback on your
answers.

Material from this week’s MTuWTh lecture
Discussion Attendance
1 point for each discussion. 13 needed for full credit
Exams
Midterm 7/15 Time 6-8p, Final 8/12 Time 6-9p. No ULy PRR A
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Website mﬁMu L tL https: //www.eecs70.org/

o

[2. 74
CS?Q éecture Discussions Calendar Policies Resources Staff é“ttendance E):iazza Sueue( Li;:o‘!ls}&‘
N R
. , MUon v \ M ol
Discrete Mathematics and Probability Theory

CS70 at UC Berkeley, Summer 2022 Gogl Tom
Jingjia Chen, Michael Psenka, and Tarang Srivastava TA vaill JUL Y"‘) A
ool

Lecture: MTUWTh 12:30 pm - 1:59 pm, Dwinelle 155 S“ MS r@?v(\ S’edo.(——

Jump to current week
Week Date Lecture Reso-.(ées Notes Discussion Homework

neteenth
FoP

1 Mon

6 ;
Disc 1A,
Introduction, Propositional solutionsﬁ/
Logic ! Note 0
Note 1 Disc 1B, HW 1,
solutions solutions
7
Wed  Proofs Kotes (2cfe— 4
6/22 ' o
Disc 1C, 1{’(
) solutions ﬁ
Thu Induction Note 3
6/23
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Instructors

Tarang Srivastava (he/him)

tarang.sriv@ « website

Hi! I'm a fourth year Math and CS
double major. | have been a TA for 5
semesters and Head TA for 3, I'm very
excited to be teaching yall this
semester!

Tarang: First third of the course
Michael: Secord third of the course

Jingjia: Last third of the course | |
Michael Psenka (he/him)

psenka@ ¢ website

I'm a 2nd year PhD student in BAIR-I
currently work on representation
learning in computer vision and
robotics. | did my undergrad in math,
and | continue to enjoy bringing my
math nerdiness into my CS research.
Outside of work, | play piano (& attempt
at music production), Smash, chess, and
snowboard.

Jingjia Chen (she/her)
jingjia.chen@
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Collaboration

We highly encourage collaboration! So, let’s define what that means. (Professor Sinclair)
Discussing approaches to problems is encouraged!
As long as you reach a good understanding of the final solution

You should not allow concerns for cheating to get in the way of discussing problems with
your peers

How we recommend collaborating...
Post on Piazza and read the relevant homework threads
Come to OH. It's okay to just chill there even if you have no questions

Cases of Academic Misconduct will be dealt with by the course staff and Center for Student
Conduct
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Why CS70?

Programming + Microprocessors — Superpower
What are your computers doing?
Logic and Proofs!
Ex: Induction = Recursion
What can computers do?
Work with discrete objects
Discrete Math — immense applications
Computers learn and interact with the world?
Probability — Ex: machine learning, data analysis, robotics,

Our goal: teach you to think more critically and powerfully...and to deal
clearly with uncertainty itself.
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Tips for CS70
READ THE NOTES! READ THE NOTES! READ THE NOTES! (|
Q

e Reading mathematical text is not the same as reading regular non-fiction.

e Read non-linearly. Jump around. Keep a pencil in hand. Work out
examples.

e We will hold specific OH this week to give some tips on how to best read
the notes. This is a skill we hope you pickup in this class. o

e Reading the notes takes time. Allocate 1-2 hours for each note

e There is a myth that you need “mathematical maturity” to do well in this
course.

e Give yourself plenty of time to think about homework problems.
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Announcements!

e Join Piazza. Read the Welcome Post
e Discussions start today, signup link is on Piazza Do & =3y
e Office Hours start today, see course calendar on website

e HW1and Vitamin1 have been released, due Thu (grace period Friday)
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Propositions: Statements that are true or false

Statement Is it a proposition? true/false?
Square root of 2 is irrational Yes , ?(‘u?abvﬁa’) e
2+2=4

Yes ) ProP , ‘AVQ
2+2=3 . Y

Nos,  of fe.l6¢
Tom Hanks is in Forrest Gump Y@ y rq.,P —‘\1\)&
Tom Hanks is a g_ot_ogl ngztg:‘l arconds Ne {_\_é nest (FOP —

J
2+2 Do —
T~

2+X=5 Pre Jos ke Ioo —
Any even > 2 is a sum of 2 primes \) 12 ? rep ?7#3@—
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Using variables to denote propositions

P =“I am Oski” Q = “I am Carol Christ”
Operation Symbol Meaning  Example
Conjunction Y AP @ T an o =N T g ol )
‘i J\ BL|[ woor Lorn
e e
Disjunction PV A P oo E om oh o~ T oun ool chap-
V S WY
Negation
net P ot O
7 P L om = \
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Truth Tables

A way to systematically record what an operation on propositions is doing.

AMD of_
& o PN & P NQ@Q TPVEA - P PV’7P
T | T T | F T
T F F T . T
P F F F T T

Low o8& Ho occldd wgde . P D te o 7P s Soge (b vt boh)

A proprstic Klet I alvys e vw_bz%w
te 5 alweys

A ? 18 POS iy
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i+ you Bbd M 2 /bﬂ"‘/“mza\) voill oo

Implications = =
If P, then Q P wples & P-“Youlike CS70" | &

F 1% F=2RQ Q = “You like probability”

T| T T ~ F oy 1k 78, o I\ Pﬂb.

) i - s oo lig & a4 A% yov e ‘pn-\b

F T T \)‘acuo“y - L \e“‘" "ﬂh(‘o}()a Gle_ Pr%h i

F F T —+rJ2 A fectessy chpn por o 4o b e

A

1 plgs an T, ebym M 7O

il ged on A
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Converse, Inverse and Contrapositive

Convese. Tndvree. ( sA o peSHR
p & |7 | lpsa |azp |+wsrq | 7277 | IaQ
Tl T | F | F| T T T T T
1T T = T F F T F
Fl F | T |1 T T T T T
. , ok, o -
Lonwnt 6y Ve {5 oy | PRB A B2 5 pasg
Towrse 7 ¥ ok oy M0

Lonten positie P ;.H; .
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Logical Equivalence

Propositional formula is an expression made up of propositional variables
combined with logical operators.

Two propositional formulas are logically equivalent if they have the same

truth table. Pl& P=2 a 720 5P 2Pv]
Example: T T v T 0
(onta PO “rr i i
3 el T T l T
ey”’ # wion | F T T !
o ™!
P = 2A >% = 7PV
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DeMorgan’s Law

—
—
—~

70AR) = 7Py 2
“(Pve) = 2p, 78

& & PA G |v(ma) | 7r v
T T T F -

) P -
T F c T T ) PACave)s p
FoT ¢ T T ) PA (@R 3
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@26 f1q ~ R,
M . @_ e (9{\‘ &
Predicates and Quantifiers & froal

A (20 8§ o)

Predicates: Statements with free variables. Ex: Q(x) = “2x is even”

T (¥xeN) (e

Predicates by themselves are not propositions. Adding a quantifier and a

universe allows us to state multiple propositions at once.

Example: 5 Ul B erive.
From Nék.%: pr/—.“l\ Ath( fowkss 1, n= +n+ 4l pr
N=0,1,+,2 .. Qo UNMUSe
2 :-.:1,-,C 1, . Cv/i’l 6’%\)(“’2’{ <l (5 f""‘*)
?-
Zz B 020+ Ul b pm

®: b R opyéz
= pecd WSy
S={¥,4,03 SR NI

)
4

17+ | «uf ir e
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“For All” and “Exists”

V7 “For all” means for all the values in the universe P(x) is true

3 “Exists” means there is at least one value x in the universe for which P(x) is true

Proctice. "Evey nonzero  rotisral nuwver con be mokiplied b/ Soug_ Voo |

powber 4o got 1
Ueglt MWy

<V$5Q¥i§)<3m6&)(i~x=/> 7

—_—

UcL QL W G Lo

UC Berkeley EECS 70 - Tarang Srivastava Lecture 1A - Slide 20



Logical Equivalence with Quantifiers P(x 5

N Joe 33 Plryy) = 33 o Pl
AL~ A 3%"’3 >j
@,’ . ':h/L Y BV MUH%
o e
Moc e Jh
Ve 3y Pluyy  F @'ﬁ Pl y) ~otiod furet iy
L \ (
e b s QI @ A Fw)_—_j,x
i S Fertt ol 1L Ve - >4
e A A

4 >
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DeMorgan’s Law for Quantifiers

W €SP = (T es) 7 f (=)

Exowmpe :
Pley %*>l10

S= 11,2, 3,4%
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Lecture 1B:
Proofs

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Join Piazza. Read the Welcome Post St Lo vp Shosd ‘/,v,
e Lecture is posted under “Media Gallery” in bCourses [yed pa Ul

e Evelyn's 6-7 pm discussion is now hybrid
e Signup and attend discussion

e HW1and Vitamin 1 have been released, due Thu (grace period Friday)
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What is a proof? Px 957, =&

A proof is a finite list of statements, each of which is logically implied by the
previous statement, to establish the truth of some proposition.

The power here is that using finite statements, we can guarantee the truth of a
statement with infinitely many cases.

Po A Jur\g  lockye

%

Advice: When writing proofs, imagine a very skeptical friend is reading over
your proof who questions every statement you make.

Since you'e learning, try to be more formal in your proof writing
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~
-

How to prove things?

Structure How to generally prove it

P/\@ Prak %7 2= frorn. Q&

we P35 tve e ylho T2 2 ooy
(P > ay ey e B i,
PieeQL - Pr .
PiN Pmoﬁ P> 6 A Y A >p

@méSB Pl Provice. Sowa €S oo proe P ex)

%‘x S Plo) Lex se e albtoy M S o (e POuy

You can also replace the proposition to be proved with something logically equivalent that has a different structure.

A d U TS
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Direct Proof (Example 1)

Theorem: For every natural number there is a natural number greater than it

Vn € N,dm € N(m > n)

Proof:

Ler " be an a,d‘bf&rw\y ok pre pombes Gad: P =>8

Obsve Yat  uel 5 alse A patral noww. Wehe) = ASSue P

DMa, U4 > o e for-h o natosl 3""

NOwie~ Ohww Hhan g Shee, N was Londoie @

@wfw He StewM= Lalds Wi el

-M%S we caspwed
D nil 15 natwol

) W&t >0
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UC Berkeley EECS 70 - Tarang Srivastava

Direct Proof (Example 2) P=a

Definition: For a,b € Z we say a|b 1ff Elq & Z such that b = aq

Theorem: For any a,b,c € Z if a|b and alc then a|(b — c)
Proof:

Lex eub, ¢ €% be M‘b&w? ok cggme
alb ook alc. So, by Defirbie

b>oqg a C=Ag, o S 3,4 6Z

Wy b-c = cqrag, - “(2~%,>. Siee
L. Z & fpelews by delmbia et
allo-c)

Lesson: |)so_ \lm)r\ )g&-hhmsg

al b 4 o pame\dL

Serdadh wonk
Al b al ¢
b= Ai' C= Ag,
la-c > %(_mzz
= aC%l’?L>
k/l.g_g
/
. W% Z
b
A | Co-c)
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Proof by Contraposition

Definition: n € Z is even if Jdk € Z such that n = 2k
Definition: n € Z is odd if dk € Z such that n =2k + 1

Theorem: For every n € Z if n?_is even, then so is 1. 154
Proof: r X

Lex W be an t'n‘ejuf‘. We wi proceedt by
Corlacposdion s Fuow Het L N s 029
He wn? s 299, Ry defiutto, = oue(ypen
A W 11 S 2 (2UZ+ 5\ 4

Shee) 2h3+2h eZ by Jefitun  nz )5 e
D

Usef Wor P = vj )

28 > ol ooy
Jy 7Plyy = A 2Poy

UC Berkeley EECS 70 - Tarang Srivastava

Let & *(-f\[ aimok—ti
M_'Z- = 2U Nn= J;;C ??;
[’é/v(-fuposﬁl

Grool: P =D g
Motlo) - rm 8. >=2p

oSAeL ;
i NS 03 Tt 7 S e
=2«
i
W= Uut 4+

NE = 20k 2y + |
A —
EZ
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Proof by Cases (Example 1)

Theorem: For all n € N, 3|(n3 —n) Goal : P
Proof: Mokt ¢ Ry NB, oo
Lo— w & 1M e R =
Core L A=3C e N Qe L TP
no-—n = (YA (a1
S 3n(3u-Dlre))
L/Z:W—J pvs  3(n3-y
Cﬁ}‘. Vo= 34—,
n3-n = @n—:)(su-,—t)(&y—o
(> 31a3-u

Crse 2 V= ket
Nn3en = (mer) rti=)d Cuvie)

i (> 3|n3i-—n
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Se.roctc Werk,

MW=y = 3¢
WCu.—l)(A-v\> = 5$

2°—2= g-2=¢
V-3 2 29oasuyy

= = 3
2 (2-032t1 ) 4 >
SEGE-O(3¢) T =3O

L

LD (uy
SZS-:l) (‘E-HB
(61 (64 %

—‘7'@ ( 7t0)

[+ h n
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Proof by Cases (Example 2) fe& it M‘;

Defigition: A real ouml ional if £ 7. such t] n

and r = 2. Otherwise, r is irrational.
Theorem: There exist irrational z and y such that z¥ is rational.
Proof: - -

Caze 1 (T (5 fotoral. Tha, we aw dor, =y-J3

Ceme 2. \VR“ IS [PMational - V=
z INCTIo ] . [ o yes= 3 . ZI:J\Z'

\PA (D
_ J2 J2 .
Y}—C\E"’B = \EZVZ;\Qz:Z

Shea 2 s peticng for 2o \rz"\l
s cd 4 = w/lue Loud an egam
Y hed Satifes  de clo, . 1=tk £ e

p‘sgw&d\ & s '\‘\w’"\'b"q.)
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Prootf by Contradiction

A proof by contradiction proves a proposition “P” by first assuming “not P” is
true. That is, the opposite of P is true.

Then, it follows logical steps to arrive at a contradiction by proving both some

proposition “R” and “not R”. = _
P=>RA-R=E ndalE
Why does this work? Y
Goal i P P | 7P| FlaPor T=F
Meded . Ayoue =P ) [T; = F{ T T|r)Top
: T £ = _
R 1> twe > Pl Py ///—r l@[ T
725 e “l“’ap /r ,jb/‘[\s F,
< e - poeof
wa P

[
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Proof by Contradiction (Example 1) = 21&; I~

[ Definition: A real number 7 is rational if there are p,q € 7Z such that ¢ # 0
and r = %’. Otherwise, r is irrational.

ves)
Theorem: /2 is irrational ghowe. N0 con
Proof: 7 P/% é’achr‘
Assime. o comtendicten Aot J2 S Pmtionn). Tn by Jethitiy
V2 = g‘; for swe Pee =) 22

2= A= = f’z'-'— 272‘ .80/1/7 ah-f‘.
p& is €M . From an ewiw thw if p2 5 e Sthoe p s e, S,
p=2k fu Sowe keZ  (2hY = HL* < 22% 72 = 2k% 975 fu 2,

So g %3 ZG‘W\,&-_ZT"“'S S5 a condadicha  Shee p ok 7 Shae
7N Commaon Pac+¢ 3# Z. . TM\)S/ \'2 7 ION o bﬂs ,‘J\(‘o.-]-[bf)a\
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Proof by Contradiction (Example 2) NOT COVERED

Theorem: There’s infinite prime numbers DU Q ( N (fz LE’: C TUKE
Proof:

E\ru( V\W\"P"'IW Ak s o
priwe isor  (csk sfvams)

Assome {lau* Comtam R ilction Hwe are finite {)riue_ Nowmbers  That IS5

P, J Py o, P A all +e prive  pumbnts, | gt 3= P-w P,
( oasi der 41 .

st 1 Olwly ' > P, , W pis e [4,\7(5-1— Prive pour.
1+ has A prive Jivisor, Thar is,

ue  exists sowe  prime < | 4t She

§0 14—( s not ff'l'\ﬂ-(. ) “Yhas

o )5 P“‘."L ;) X €& 2P|,n-1/n5

F 219 g xl«pﬂﬂw e 1 (q#1 ~3 .
Thet 15, 5| bot- oMy LI AL XRE | s K a Caeiedicion
So W Wy e )\AfohJ‘] Wavt] primne  AJMpYUS,

Ao~ ')(,la,/ . BT rm\h‘ﬂs Lewiwa | )
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Tnece rrect—Proof

Theorem: [ = 2_
Proof: Fas »:_; v LNome

WE =2y = 3.2 —y2 aN;aa_ \’1 zYe
=/ SMMce 2= O
2 O3 = (- Coety \
W = )C+j
W T Z7L

[ = L,
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Summary Not covepepn py P& LEcToeg

Proof Technique @ General Procedure
Direct Proof Qool 1 PR Metod: Asswe P
! 3eps
Conclode. O
Proofby God @ P2 KR MeAled - proce 28 = 7P
contraposition
Proof by Goa\ : P Metlod:  Assua 27
contradiction Prove R
PpA'ﬁL 7R
Proof by cases oo\ : P Pated ¢ Suow By Y. VR, & tve
Show PR(=7 P
G\AO\') A n> P
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Few notes about what we did today

Write full proofs in your homework like we did today, but on discussion you can just write an
outline /sketch of the proof.

No one gets the complete proof immediately, there’s a lot of scratch work and thinking before you
can write the proof.

Remember! Every step in your proof must be justified and follow from previous steps.

Usually how things go:
1. Think about problem
2. Do some scratch work
3. Come up with solution
4. Try to write a proof
5. Realize solution is wrong
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FAQ
How do I get started?

Think about the definitions that may be relevant. Maybe a theorem or lemma
that was in the notes.

I'm stuck?

Try doing a bit of scratch work to see if you missed some pattern. Read over
what you currently have in the proof. Try proving an easier statement or an
intermediary statement.

Is my proof correct?

Question every statement. Does it follow from a definition or previous
statement?
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Lecture 1C;
Induction

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements! ‘
MUpwr  lecdore will be vp
e Lecture is posted under “Media Gallery” in bCourses

e HW1and Vitamin 1 have been released, due Today (grace period Friday)

q/aes\-.,‘o/l &
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What is induction?

Goal in induction is to prove some statement for all natural (Vn € N), P(n)
numbers

Principle of Induction

e Base Case: Prove P(0)
e Inductive Hypothesis: Assume P(n) '] Hase- g¢

e Inductive Step: Prove P(n) = P(n+1) Cone &
Deck froot- P =
/]
Assg»e > QA
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Visual Analogy F(s)

Prove all the dominos fall down Se w f
e P(0) = “First domino falls” Base Case
o E(E)‘é P(k+15}k@w10 falls implies that k+1st domino falls Tp gvobic. Sy
aZaly

"fr €
Even if yo# had infinité dominos lined up, this method would prove all of them

will fall down (More on this Week 4).
Oovnta il ~
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. . Sose. Cose.
Simple Induction (Example 1) Trdocke. Hypias

Theorem: For all natural numbers n, 0+1+2+...+n = ﬂﬁ;—ll T rovetde € (ep
Proof:

oo+
Base Cose : n=0o O = Cz_(> =0 Vv K et
Ina. &F, : ASsdu»e_ @»w‘ dowe Nz zZ ﬁ‘ 5 e Heh Ot It..+k = 2

I@J%P : Prove Heb '(2‘*” Nz kv S clam bhelds
¥ 2 ‘,.‘-(—QL*,): (K'('\\Ck—t&)

T 2 :
Kl/%— 2+ .. +k+(eey = KOk + (e (= Wt + Atz ()02
" e~

77 - 2 = >
T Secon) eel,vavlﬂ7 hold s f*l‘ow tle.  MIuetve [":/)‘s""es‘*-‘\ . US4 Huaen
hel2s ‘47 MQoctHOA
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Simple Induction (Example 2)

Theorem: For all n € N, 3|(n® —n)

Proof:
We WMot o4 He Vaclable
Base Cosa @ NTO 3lo*-p - T R +cqul\] e .

Tad. Byp: v 0=k asswe  3(US~k e J st Zk,lk’:BlL

Lo Btep . We wish Yo Shos tod  fon yops Get (¥ —et)
(yxtl)3-0(_—\l)= 2p peEMN e e

K3+ AT 130 | — (et1) = 3 p
K> =l + 34> & sl 47>T = 3p
39, + 34T + 34 From He M. hvp.

5(gt M +w) - 3p by Jet. K folaes —H«b s
& M p= g Pk Goe (B3—Gerr ) 57 29 7T g
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Simple Induction (Example 3)

2
Theorem: Any map formed by dividing the plain into regic;ns by drawing
straight lines can be properly colored with two colors
Proof: We Wil Mck on 4w sows~ of- Res. Lot A ok s

Bﬁ%/&‘g%&: r=o Coler e ylde f)(nM ore colen ']—
Tk My Far n=ke ks assme A~ 65 Hwo colovodle '

Tnt Sep: Consior on a/*b,‘\iﬂvry winp with kel bnes
TV, ok one 1Me -I’l«om +tz e, 5'\/ M. hyr, s
W wap With L l\es Is dwo colongble | o, 202
boccle e (M2 Hed wag tewmaoed b P(ip all He cda
DA o Sik  of He (.

B cowtvetivs il Ho 1‘9(’@3 a)jocw& Jo N [\ #et 5
212> L 2t LS. T, «:_mg;o, e wp fob R

S coNe tolaad Ly hyp. TV was Flipr, + tlso Jwo ctlod l/;y ousyy Suce
ve ﬁ?;*‘ Sl 7\—9\ PN 17 )

UC Berkeley EECS 70 - Tarang Srivastava
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Improving Induction Hypothesis (Example 1)

l(s;_)_!e_/\ J ] l ~
Theorent. The sum of the first n odd numbers is a perfect square r=
Improved: Tl-Qum of —te Sk (n o) fowss IS 2 1€ S . 2%
Proof:

' - R

Bose loge W | = 2 I+ 3+ s = 3

43 ¢S+~ I o

LMF Ass e K ¥ se- t (2/4_—1) - k% .

——~——
2025 [43% - - (2~ = ko

Tnd Step:  isin 4o skow ° @

z v
e 3 €5+ . (o) + Grrl) = (ew )* KE+ ety = ()
L——/\\ _~
\
e a4 by b
(e + | ¥ . <

S ﬁ
UC Berkeley EECS 70 - Tarang Srivastava Lecture 1C - Slide 8



Improving Induction Hypothesis (Example 2)

noleg
Theorem: For all n > 1 Z 5 <2

Improved:
Proof:

UC Berkeley EECS 70 - Tarang Srivastava Lecture 1C - Slide 9



What is Strong Induction? geel -
Principle of Strong Induction W P

e Base Case: Prove P(0)
e Inductive Hypothesis: Assume P(0) and P(1) and ... and P(n)
e Inductive Step: Prove P(0) and ... and P(n) = P(n+1)

plo) N PLO N, A PCrY =>  PLatl)

8‘\'*”0%]0 Mo+ ) S J'mﬁued Lfy WL | 1 Ju=tion

UC Berkeley EECS 70 - Tarang Srivastava
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Strong Induction (Example 1) Pve. Loctarizoction

Theorem: Every natural number greater than 1 can be written as a product of one or more primes
Proof:

Base Case_. n=2 . 2 > peine So /R ’(}m Locloizdon s 7'3“6*2
L. Wyp: Assame  gleam  Lolds for Al Lz

Ird .Sl—e!='. led =i

Case | : W+l )S fm\n& . We s deve .

Cose 2: Ktl s Composite. Terjar, J,pem, ktl =a-)
Sice K« ( 21 P [a,p Lkq T, L7 He . hp. & ad b con
be wdln as o prodocr 0@ plimes  TUOS,  Ktl o be jonflen 5>
A ‘,maaca- oft a ad bS YA

a

UC Berkeley EECS 70 - Tarang Srivastava Lecture 1C - Slide 11



Strong Induction with Multiple Base Cases (Example 2)

Theorem: For every natural number n > 12, it holds that n = 4z + 5y for some
z,y €N

ok 2 CAT

roofr:

Borse Cosed =) [2= U[3)+S(> 902.3/7,_—_0 _
|22 = Y(2) v+ S(o)

(> = m S(¢) ‘

lu =~ 4 =+ 35(2)

Is = Ylo) + S(3)

T Wp: Asswe  clum LoZ for ol 122 wek
:x:mL&'{-ef1 Ne=ictl = 14 . -rm./Qc_-eIS-'b)alz
By e M. hype  (Re)-Yy = U +5¢! for soe x4 €H
Kt = Unledg! o = 4B+ 451 S, e
e o seb ve=xltl 4o ys o
= J
kb= dre +5y

UC Berkeley EECS 70 - Tarang Srivastava

12 ~

K= Ux +S
Yoty St

el = Yo .(.g:,\

[6= (X <
U <<y
09 +5,
L{'x__-lrgj ‘f"/

Yoty
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Why ever use weak induction?
Weak Induction = Strong Induction
If you wanted to you could always use strong induction

It is nicer to only use weak induction if strong induction is not needed.

L& Coste- T e roxder

[@osim Lo CovtcM mis teleos

UC Berkeley EECS 70 - Tarang Srivastava Lecture 1C - Slide 13



_ o JuesS >3
Well-Ordering Principle S< ™ « S#3%% N

The Well-Ordering Principle states that for any non-empty subset of the natural numbers there will

be a least element. .
s o pove fockeized A
Theorem: Every natural number greater than 1 can be written as a product of one or more primes

Proof using WOP: '
LetA s be R sod 4 Vidoral Avwbws Yot camney be wrH a5 o

prodvets of= pCimas. Assowe feur contadickiog Heh S s o ewphy.

By WoP, S les a Iemgweietxmwé—mnu s

Olﬂ«w‘ly/ W Is  umox fc*imQ,/ﬁSo/ we- (CaN w(‘:"’*& Mzerb A,/Iléﬂ‘(,
I+ Sollws ot A 2r b pesAt lLove o prime. foatori 2,
Nook loss of jof‘o-‘*'"ﬁ‘:/ (_‘M«O&)) 2y o el Lo ownitta As & poadick
6€ priwes. Noki®, suce  N>( jzazcn . TS 5 a comtedide~
becowse UK A ES bk o S4d w s He lawy eloset]
TS /5 i3 emply au Yo Lethy . ) °

UC Berkeley EECS 70 - Tarang Srivastava
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Summary

Simple Induction
o P(0) and show P(n) = P(n+1)
Multiple Base Cases
o You may need multiple base cases to prove a statement

Improve the Inductive Hypothesis

o Sometimes proving a “stronger” statement is easier
Strong Induction

o P(0) and show P(0) and ... and P(n) = P(n+1)
Well Ordering Principle

o For any subset of the naturals there is a least element

UC Berkeley EECS 70 - Tarang Srivastava
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Lecture 2A:
Graph Theory I

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Read the Weekly Post ;13; Hall

e Tarang’s OH 4-6p in Woz Lounge (Zoom also-same link as lecture)

o  First 30 minutes for conceptual question
o Last 90 minutes for reading Note 5 together and question about the note

o  Will not prioritize HW questions. Use regular OH for that.
e HW 2 and Vitamin 2 have been released, due Thu (grace period Fri)

e We are adding a bit more OH support, but also work on the HW early
e Throughout this lecture definitions will be underlined B Hazza

T

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 2



Undirected Simple Graph Definitions

An undirected simple graph G = (V, E) is defined by
1. AsetV of yvertices. Sometimes we may call it a node.
2. AsetE of edges U3
Where edges in E are of the form {u, v} for u, vin Vand u #v.
A graph being simple here means no parallel edges
A graph being undirected means there’s no direction to the edges

Examples: Yes, At "
$A,33 = 76,43 Gl
A B
o ___75 SuV 3 A’\,J,
AN
/0< .i/ﬁ%’%’ Q ) E
o D M’tﬁ_ﬁ_ﬂb Nak e p

S=p* ‘

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 3



Directed Graph Definitions I e

Edges in a directed graph are defined as (u, v). That is, the order of the
vertices matters. Therefore, (u, v) # (v, w). (ws)
Examples: ~ ’

Ao<——s &%
(AJ@\SZ//‘\
/

0

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 4



Edge and Degree Definitions
Given an edge e = &L/D} we say (22

c e

e is incident to uand v \'4
u and v are neighbors
u and v are adjacent

The degree of a vertex v is the number of incident edges
o deg()=[{vinV|{u, v}in E}

Examples:

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 5



Summary Questions I
\

How many nodes in this graph?

1£

How many edges?

Which vertex has the max degree? RAR D,4

Which vertex has the min degree? &l 3/9/7/
I

Which vertices is this edge incident on? £« S

What is the sum of the degrees? 37’—

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 6



A = ?_(/ 2/ 35 ')\' .
Handshake Lemma 5 - 3 L size
‘Cq.n}‘\'nleL/ Y
Lemma: The sum of the degree of all the vertices is equal to ZIEI‘2

Proof: Preceed b7 Mdocton o 1B =
Bose lesc. ' pm=p A 7mpl& les o @z & all #2 Jetics are Slaid
(e vo NU&«xs) hos ek Vi 5 )71«13 0
Ot...v0 = 2y .~

:];,.()\_[i/(; Agb.,;wg daim Ubelds 10"“ m = e % , o Smef pEs s ZK

b Clep:  (oasider on mrlo?«hrﬂz IEPG e Kl ares.  fomie ony
Qe fow G- T Jow JopH hes k 95 ax by He (Juhd
\/ui'oow’s"j Som . - )ﬁ’\ﬁS 5 2k, Ter o))y bk ‘@&@e
e 023 | Jepra ¥ o et Jerlex . > SuM a@—&?@

Now\ -
N Dtz = 2@3{4) as )R N

>4t 3?]".5
UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 7



Path, Cycles, Walks and Tours - B\ /

Deals with Vertices (though may imply things about edges):
AJ G- C 31-—&
Path: A sequence of vertices in G, generally with no repeated vertices.

Cycle: A path in G where the only repeated vertex is the first one and last one.

Deals with Edges (though may imply things about vertices):

B3 28 4> E=>
Walk: Is a sequénce of edges with possible repeated vertex or edges.
Tour: A walk that starts and ends at the same vertex.

Eulerian walk: A walk where each edge is visited exactly once.

Eulerian tour: An Eulerian walk that starts and ends at the same vertex

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 8



Summary Questions II

Give an example of length 3 cycle? _\Y; 3, H Py 4

Give an example of a path from 2 to 82 4, 5.8

Y34,
Give the longest simple path? /% 7, l, 2,57

neete ents ?

(
Give an example of length 4 tour? 1707578

r\_/

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 9



Connectivity

A graph G is said to be connected if there exists a path between any two

vertices. %»‘L&C/Dj
Examples: £ A yz., 2 5%
) lan ‘ ST € 37 iH}
N Ve
> c q o

Any graph always consists of a collections of connected components. A

connected component is a set of vertices in the graph that are connected.

S X7/
x( Lecture 2A - Slide 10
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Eulerian Tours

Eulerian walk: A walk where each edge is visited exactly once.

Eulerian tour: An Eulerian walk that starts and ends at the same vertexj
Theorem: A undirected graph G has an Eulerian €au#7iff G is even degree, and
Connec\;ed “"""‘34:; 6“"7 \/ed-e;a
Proof: in the notes aﬂg"'&

é_ /M 30

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 11



Summary Questions III

Is there an Eulerian Tour and if so provide a tour? g A

6= 25 [ D07 Dg=b>5PtI3FU L

How many connected components now? \
Connected components now? t

4

What about now? L(

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 12



& @ Louw i @arpe g e
Graph Proof 4¢ I AN
False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected.
Proof: We use induction on the number of verticesn > 1
Aase Case: There is only one graph with a single vertex and it has degree 0. Thus, vacuously true.
Jriductive Hypothesis: Assume the claim is true for #§§#e ‘TALZ‘T

Inductive Step: We prove the claim is also true for n + 1. Consider an undirected graph with n
vertices and each has degree greater than 1. B ' ' '
s Now add one more vertex x to obtain a graph with (n + 1) vertices.

ed

Since, the previous graph was connected, and x is connected to some node y then there’s a path
between x and any other vertex through vy, since by definition there’s a path from y to any other

vertex. Thus, the graph is connected. Nl s ) WS Cewode -

ot
/ —
[
Lecture 2A - Slide 13
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o P < P{M{)
Minimum Edges for Connectivity

Theorem: Any connected graph with n vertices must have at lezﬁls—‘;c> n-1 é&dges
Thdockd 21 yortices = || :

Bese Case. © A= ( o Oaaﬁ_s o= (- |
A H‘F © ASswe  plaim baloy \ﬁq cnsk 3= Jc%f (\‘)

Tog Skep: (osdur & Comockal Gaol. G wH = ke V’i{ﬁ_&" .
Remore an !t VAR . hmdy V.o e creers S e ,,MLJ’(]KY)
C owm \OOMS . /37 b“lfoa \ch—\ld\ &-0"\ ('MQ"CQ (WpMQ "J“ Llos

A@ ) e fd oy L@, Aoy by owe b
k,+tk, * "'.“(S — =1 =1 fr a0 L’WJK S 23705
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§fomplete Graphs

A graph G is complete if it contains the maximum number of edges possible.

Examples: ,é[\
Ky
AN GV
K ( i T k’ﬁ k\/ \e —

Ks

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 15



Trees

The following definitions are all equivalent to show that
a graph G is a tree.

1. Gis connected and contains no cycle;,

2. Gis connected and has n-1 edges (where n = [V])

3. Gis connected, and the remove of any single edge
disconnects G u/

4. G has no cycles, and the addition of any single edge

creates a cycle

UC Berkeley EECS 70 - Tarang Srivastava
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Tree Definitions are Equivalent

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges.
Proof:

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 17



Tree Definitions are Equivalent (cont. )

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges.

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 18



Bipartite Graphs

A graph G is bipartite if the vertices can be split in two groups (L or R) and
edges only go between groups.

Examples:

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2A - Slide 19



Review

UC Berkeley EECS 70 - Tarang Srivastava Lecture 4D



Lecture 2B:
Graph Theory II

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!
e Read the Weekly Post feqted ‘ew(\?ﬂ&

e We have caught academic misconduct cases
e HW 2 and Vitamin 2 have been released, due Thu (grace period Fri)

e Throughout this lecture definitions will be underlined

s O vorp yc)av/

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 2



Minimum Edges for Connectivity \Z _»

Theorem: Any connected graph with n vertices must have at least n-1 edges /P v
Proceed Ly Thmig mdsckdn  on MUV T ey
Bt Cime: IN=\ -1 o
TAK H--»/p : ‘%S\Mo_ clesim hous | & e e

n=px| = [¥Y| 6= (v

Trt_Skp:  ComiGr an orln'kr7 gepn § it
TR e Oy verler v oy He v‘eSJH'g Jepl Gl = (g
pgmow‘a Vo CerkS o mov 9'36 V' Connesled Low po IS, w*‘ﬁéﬂ?\/
lo ba Yo asmsen of Yarties M W M qppmes) compeoa-

pmai-aa K "
g 994 M ek comodd | [Mows foon Mo, P N L.
IE‘\ + [E,) NN el 2 G-y 4 .. v (s —1) ‘”e'?; e

E'l = (Bl + gyl > Uy +..txkgd — S €= 1g) +5
% Vert's

/El = E'|+dg¥= Kk -3 + i
E % - > Q'(‘Ul J—| = K
[ E ‘ .>_ k 0‘5 d&ﬁ'ﬂé Lecture 2B - Slide 3
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Complete Graphs

A graph G is complete if it contains the maximum number of edges possible.
Correction: K is for mathematician Kazimierz Kuratowski

Examples:
° ° |
I I '@]
K P K 3 le S

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 4



Trees

The following definitions are all equivalent to show that a graph G is a tree.

(II? G is connected and contains r;g cycles e

é. G is connected and has n-1edges (where n = [V|) «~

G is connected, and the remove of any single edge disconnects G

g,

G has no cycles, and the addition of any single edge creates a cycle

.\/o\ 7 é7.§,, :

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 5



Tree Definitions are Equivalent

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges.

Proof:
=> N o cyeus,Ha /-l amag Proceey by 1Ho¥or an # of iy

Fore lase : =t bos 10 akes S
Toh. B Pssowa Yo oladn for ol e g

Y. S'\CP s Congidr a 9(}3)0[4 o N« vetles, Pev<e My orhry
varkes .
Cose \ 0 @' 15 Jiscorancey . by i M. Uy o gt Comelnd Coupa
( 3imiton prost 2o Lofue )
Lase 2 Gl' 'S Conrewd, TN Gf Les Q- e(?yos by M. Lzﬂ, wa
hoa Vact /. ' con 0"'7 e Mcidert  on &e 8%&
Twos

ONerwise g &' 5 ropmase G waRAUL Led A Cyek .
a1y oy, | d7a Twes L ey feo el VRS

UC Berkeley EECS 70 - Tarang Srivastava
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Tree Definitions are Equivalent (cont. )

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges.

& w-) ede , e Mo oycley

Assove  fer  Corteyic¥en 6 1S L(onmsin =\ les __':;}_ 0> do
plSe Com=\s  acvele. Tlea V“Qwoo“? m eda fom W o
M G Dees nek Discorneet 6. Now §' hos n vethss vy
6 (‘Z N—z €29 - Wulclh we rroNa canrlion 5 ot~ pessible ]

57 los o CY ol _
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Bipartite Graphs

A graph G is bipartite if the vertices can be split in two groups (L or R) and

edges only go between groups. 7 tea i ‘a_wd’w o St G
\WAvCes ok \/“&A— N cols
G is bipartite iff G is two colorable Ve OSE <

Examples: 2, L B~
L. O & —© ’\T
0/ ® & |

O 27

L(?JL

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 8



Planar Graphs

A graph is called planar if it can be drawn in the plane without any edges

crossing.
Examples:
2 “T N O

VAN D = \?

Ye> Yes
o e yes

Kyy3 = Lsa Ké’B

O

>

? © Aon plano”

Vos O Ye> P

UC Berkeley EECS 70 - Tarang Srivastava
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6
N

o
3
Ne

Z
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Euler’s Formula:v -e +f=2

Theorem: If G is a connected planar graph, thenv -e +f = 2.
Proof:  Pre ey by MJOetdr 9 €
Brrelone - €50, £21 N2 = \-otte2
,‘[}d_’l'q.‘) Assone Claiwm  Lhods P e=Lk
T ep . (asidesr on a(‘b:|~e7 7m'|4 4 wil., ezt
Case- ). g > AaNee. T fol, yz g+
(ex)—e x| = 2 v
Care 2 - 61 I35 ey~ a hee, ‘W’\@("“S ccyep, Muwose o ec?qfo“_,
cydp & 1y 54]\ (oM7) AN flac( TUD Gppy . hay.
\ - e' + \l( = >

hodlg e 1o eR  creas | fol
UC Berkeley EECS 70 - Tarang Srivastava \/ - (Q f‘ 3 \t @ * l) \(w Q— #'Q o Z_ / Lecture 2B - Slide 10




Euler’s Formula Corollary: e <3v - 6

Corollary: For a connected planar graph with v > 3, we havee <3v - 6
Proof:

Define a Side o ke e Skl £ a4 I Jwadd A fee.

-~ -

Ex G%T\ X Lecce ( L5 Y SidS °~
;/—_J, bce 2 Ly Y e \ \, l/ { S,
Lot S = nomen of Ss far M Lo
%_E(S., = 2¢
Eacth  few Las 3 Sus ot oo
2e¢ - Z S¢ f = 2= = 3¢
S 5 2e z SUHENVY =5 egzd o

2¢ 2 b6+ 30 —-2y
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K, is non-planar

Proof:
Assoe fer  Contagictio K s plecn e
V=5 e s 3¥v—¢
ez s 4L _ b £ »(sy —¢
2 = 1\0
(2D e £ 4 5

o

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 12



K,,isnon-planar ~ #> 15 en e

Htw
Proof: o
Assue tew Cor~g it Hitt ! (Con N ‘705%
A S,|,g,€p, W‘Z@l‘?
vee ? 2 3v—6 Y
&= T< 2G5« Cz 2y
1os e :?: bQcc:'\)ye /‘52
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Kuratowski's Theorem
Yp s ge

Mm—f l’z‘mof‘

Theorem: A graph is non-planar iff it contains K; or K,
Example:, e

(. 5
e —

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 14




Hypercubes

The vertex set of a n-dimensional hypercube G=(V, E) is given by V = {0, 1}"
i.e. the vertices are n-bit strings.

. S“l /‘7. ‘.
w dim = 2N yeshiees TP o0 BiP 7
00 01 000 001
[ 2 ]
0 1 100/5 101/
@ ° - |
[ D 2p J/ *b
: : J -~ » 011
10 11 -~ 010 /
&
110 111

Prole  eoas Ms[yqraoég 5 Idr‘Fm fibhe

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2B - Slide 15



Number of Edges in Hypercubes

Lemma: The total number of edges in an n-dimensional hypercube is n2"!
Proof:

2§ = Zw = no= o g

U
/E( = Z_-n

2
~ n“(

—n2
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Lecture 2C:
Modular Arithmetic I

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 1



Announcements!

e Read the Weekly Post
e We have caught people for Academic Misconduct on HW1
e HW 2 and Vitamin 2 have been released, due Thu (grace period Fri)

e No lecture, OH, or Discussions on July 4th
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Hopetully Review (Divides)

Def: We say b|a if there exists some integer k such that a = bk

b,a ¢ Z

Bramea : 17, 51
% Tk ez 17lst 7
=3
bl 0 &l= 173
o= b-0O j Z i
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Hopetully Review (GCD)

Def: The greatest common divisor (GCD) of integers a and b is the greatest integer d such that d|a
and dJb

M= War (4, 6)

Examples: o(w>
sedthom 2 2127 1y for & Mrogalmy.
ged(12, 16) = Y Wliz  ulle [l 7

¢l b 7

gedsl@= 17 (7 She 17 B gyt ged i b, (7 or |

ged(5,16)= 1 |2 Shwe o WBAS | IS ad (6 ae c2 poiva

gcd®6)= | —= site 7 > prive. ycé wil be 7 or |

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 4



Hopetully Review (Division Algorithm)

Thm: For any two integers a, b. There are unigue integers q, r Wlt p such thata=qb +r
Uh Qrede St~ a—"-b;z
7"""' \ fewarlig

|7 =5 = 3 Qw2
P | e B fms e
A L 9. e JUska Q&a{d‘»—s

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 5



Hopetully Review (Fundamental Theorem of Arithmetic)

(Peive. frctorzatin)
Thm: Every integer >2 can be uniguely expressed as a product of primes.

Wa rmu. 22 b \IB.‘«B IWucHon sk uwel ard o™ g, principlo Lectwe ¢

AN ‘4
N
e X & &
7\
@ @ 6= 3.22
52= 22113
j,} us set of-

Peives 1S Dm'7:£

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 6



Mod as an Operation

PY%D»‘)
You can think of mod as just an operation (i.e. what you're used to in 61A)
X (mod y) h,/’“
Example:

13 wed S =z 3
17 weyd =2

I

(1
~

\7  wmed 1)
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Euclid’s (GCD) Algorithm
%‘r;‘:" IZet x 2y = 0. Then, gcd(x, y) = gcd(y, x (mod v))

~—

Consider example x =10, y = 32
Jeet (o, 320 j»_aLC‘SZ) 16 (#ed 32))

= gea (3,105
geol 10, 32 mad10) = et llo) 2)
P 9cé\(z/ lo wmod 2) = 3&,\(1/ 0) = 2

1Y)

I

=C
gcJ-COL, O)

Oéloa w) ~
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Mod as an Operation (cont.) Makn LGz

Ly
You can think of mod as just an operation (i.e. what you're used to in 61A)
x (mod vy)
Example: Weed w1
17 wmey = 2= | e%aiJa“”‘"
\7 wmed @& = 7
{O/ \, - M=
=17 wod 6 = =723 ( £ |3
o,....,; ¢ ba“"o y )
Lo A\ D 4o 2 - S
- -y 7@ < .
- - (3
Ghod1d 17 = 10415 « 3

| 3 = 3 |
UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 9



Mod as a Clock (W 12 (resne)
W\\)M Cb.J)

You can think of adding in mod as just going around a clock.

We will say all the numbers at the same step of the clock are part of

th‘e same equivalence class. (ex: ..., -11, 1, 13, 25, 37, ...)
+ O =

| + 12 = 13
]t lz+<2 = 24

253 ... (w:oalz_)

=-U =223 ~338 ( we L2

G
W™
1
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Mathv (O

a0okcn”
Mod as Space ot (3
Bubiect,,
You can consider doing ALL your arithmetic in a given mod space. = We Wr‘l“”“f\/
oN iSlo ) Nl
< S\ide_
{,‘gts come up with some rules: Twu: sz e (medw) bzd e w)
b/.%*j&/z\\ = ( (m= S At = c+d (w.am)

343 2 6 =\ Ab T L\Ma)l»y>
3*(‘1)3 |

%po
./3_’2 =

3+ L2z
2«3 = | Uned's )

N/zvft«ﬂ( (oS )
22.3."1 (ned s)

CAKT
UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 11



jost o Syuronl

52 = 5L 75 M B
7 Inverses (Modular Division) =

1
We can redefine division in regular math, to just being multiplying by inverse. 2=
The inverse of a is such a number such that aa™ =

In (mod m) the inverse of a only exists if a and m are coprime (i.e. gcd(a, m) = 1).

A
-\ ) S é)fbd.k
LY = Z (‘Moa 177 3S = 17-2 —(.@ S' 2
S-S5 = | (me> 17) ®
— S 32
S.7 = 35 = | (Mo (7 ) z
EfMPLQ' sb‘\h& e Eq.}a.k-'orj A\ﬁebm‘
5o +3 27 (med L7) o %2
Sy 33-F z 7-3 ~=
s 7 = 45 med 17) 5 sG)+3= s5¢ 27 &ad 17)
B e
w z b1z 2y (b () - e
Sometimes we say relatively prime same thing as coprime. w2 ot

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2C - Slide 12



Let’s Bridge Algebraic Form with Modular Form

_ Nsva M~
a = b (mod m) iff there exists some integer q such thata=mq +b & A= Mgty Cred =)
| Wﬁ.\’;’.w)é (__,r:,.—,
GCD Algorithm): Let x 2y 2 0. Then, gcd(x, y) = gcd(y, x (mod y)) A Z byt p

Pcoo?. $°|°F03€_ A VS an 4rb(4-rw>/ INison of laxthy
)LDvo\_j.CdJJL ot alyg),

By He dVISien oottty we con welbe  AE YN
Notkee, 2 3 0 (nedyd | Swe, dly  w hoe  Algy,
Tlen fron lecte 1B, wWe Mow A\ »— Y . X9y S
ga/ OL(\(\ . .TVJS/ 'x')'j ok 5‘-(‘”‘&:1} Shacva "HQ Scre. &EUFSU‘S
Shea  wod  arlofteay Nonsty -/@7 e te G gep

oz b leaéu«)

Y

Aso Ghwo et ONwS off 4 ek /o s of x%xD

D%
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Extended Euclid’s Algorithm: How to find inverses

ﬂc&(’ﬂ,j) al| JeeOL g = Ay +C
Find the inverse of x in (mod y) by finding a, b such that 1= ax + by 4 ’*""0'-“’7
Example 2: x =7,y = 32 7' pmed 32) $D(O*‘a fr 2, Jho
Ak, woted Lo in i seles:  Gua fud AL Yoo e uus?
2(y + 32(0) = ®© = Goetly (o) )
ws([ 7(2) + 32C1) =32 S I 2 O ye DS
Ny 6\/- | SR o
2(s) + 32(e) = BSQ.. [= ove tbky GED)
7(5) + 32¢) =3

v Ug

7(ss) + 32(-11y= | QZ 7 Gmed 22) 33 (e 1)
j’ l}‘ /] ﬁ\ J, S5 23 &,,93 3?_> U“{ dﬁp) 7>
LI 4 j b

) —12 G 7)
UC Berkeley EECS 70 - Tarang Srivastava J‘A’ Q% ® 7_' = 23 7-23%2 ¢ =l 6“)3 Z) (22 7

-
(4‘ zg% = ’Lecture 2C% slide 14

34349 Qﬂ-’x)

&

G = by
7(ss) + 32(-1) = 32 ®
!



Repeated Squaring

2! o (Mmoo “)
How to find x¥ (mod m) for large exponents.
Example: 4% (mod 7)

, (o) 7
4 = g

(1{7—)\3 47 =
(Y 3? =
()" =
[1)%%= 2

UC Berkeley EECS 70 - Tarang Srivastava
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N
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O

-
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2
2
Z
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Lecture 2D:
Modular Arithmetic 11

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Read the Weekly Post
e HW 2 and Vitamin 2 have been released, due Today (grace period Fri)

e No lecture, OH, or Discussions on July 4th
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Repeated Squaring

How to find x¥ (mod m) for large exponents.
Example: 4% (mod 7)

blo o Cmoa7)
- Yy
Li' _ L( L‘ Zg Li32_ &1?‘ L['Z = 32“’?-@1
T 2-2-22 8= @,,,_.,97_)
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Reca ot B
p ?L ¢¢aw \

e Division Algorithm &, v o= b@ +

e Greatest Common Divisor (GCD) Definition

e GCD Algorithm: Application and Proof 554:!(97 = ged L 3 nad N
e Every number has a unique prime factorization g., 2= 13.2-9

e Mod as a Space: Defined Addition, Subtraction, Multiplication and Division
o Definition of Coprime = gectlyyg) = |

e Definition of Inverse and division via multiplying inverse

e Extended Euclid’s Algorithm to find inverse &lxxbj =\

e Repeated Squaring
Ayetly = jchC'XJ )
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+:A=5 P 2

Bijections Zi.

A bijection is a function for which every b € B has a unique pre-image a € A such that f(a) = b. Note that

this consists of two conditions: &Mﬂ,fw\\-te . 7"‘ %
WS urfectne oot al | )

1. fis onto: every b € B has a pre-image a € A. Y78 ,_; Lo
N injectve '\(’
2. fis one-to-one: for all a,a’ € A, if f(a) = f(a') thena=d'.
NoT A
FonctionN

| <]
| o]

X

poevl"‘a (2 A _B A B
s
Q- N )( \[ Injective Surjective “ﬂ Bijective
(one-to-one) (onto) (one-to-one and onto)

(3 %
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Bijections Examples

this consists of two conditions:

1. fis onto: every b € B has a pre-image a € A.

2. fis one-to-one: for all a,a’ € A, if f(a) = f(d’) thena=d'.

-

A B A

XX

B

Injective Surjective Bijective
(one-to-one) (onto)

BASB  od £ 6 Mjehe
Al £ |8l

N P 's S’Jﬁ{w
(A = (B .

£ 13 b,b,&:l-io.
gl

- =
UC Berkeley EECS 70 - Tarang Srivastava lA l

(one-to-one and onto)

J IS on muse 0€ € i

Jlel) = Ma

A bijection is a function for which every b € B has a unique pre-image a € A such that f(a) = b. Note that

-P('n)) = 2%

-(l(.;v) = 2

FON= 22e

Pl = 20
hage Lo
POy 23— e

_@Lo) > e
PC)Yy= o é

} . 2>m
nectes
tp > #grusos
SWyjacdte
f: N=MN
(rjectie
Fak#R

by etic
+: R
Foopeeh
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A Useful L foo> s ax vy Asdw o e
min

Usetul Le a £ 5o w3 Sop ., Wy

Claim: f(x) = ax (mod m) where a and m are coprime is a bijection.

Restated: The sequence 1a, 2a, 3a, ..., (m-1)a is a reordering of the numbers {l, 2, ..., m-1}.
Proof:

() —> °©
AsSSowe J;ar* tortadickon tet F 8 ot « b;7'ec+iaf). [

wid W ey

2

Co Pf‘n&L ']'\'-U/ Shae fo «pmc«l-d\s md. Hus M]C?Lr'j) M ‘
Thh 5 o LlomelieHn ske x, Y €SO L-s W13 SO %_w:ﬁ_) =
x~Yy am . TWS/ -F- NP L}j!e#iom \ 7) /%llg.a/“
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6704.!'.
dx & e

Thm: if a and m are coprime, then a has an inverse in mod m M| D
Proof:

Comtda™ 4= Sequucd {rou, Lefe e, 20, ... G-l Yy
wa ﬁ/‘ow $uis 5%“ §§ A b/'7'ec.+|b/\ +D Zl, 2_1 cee (/n\(ﬁ

Existence of an Inverse

qoo  Wie myee ek ugs o)
Tws,  yaz( G(odw) y o e wse o A (e n).
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A Necessary Lemma |

Jo exshre of Lu jmere
Lemma: éﬁnd m being coprime is a necessary condition for fx)=ax(modm)tobea
bijeettor—
Proof: 1€ geala,my >\t o daas e N e wwe [mod o)

Pove oMethy . Lot A= gea loywdy ok o Lus an s (W0

ay = | e ) = rq = vl + | ez . Shea, dle ak A
;v/{\m we  algy lnoe  Alay  adk dlmik 5 4] Oy~ k. Lee. B
oy—mi = TUS A \l r So, A wost be epal fo 1. T

A ONA WM N c_opm‘wc.
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Inverse is Unique (From Discussion 2C Q3E)

Suppose x,x’ € Z are both inverses of a modulo m. Is it possible that x #Z x' (mod m)?

S'.;Nose Xe 2l > va MINSeS oL a

o)
T,

(Wed 1,
A = ax'l =z |
Wy, I x \
A A  >ta gz |
BT W S e
x = !

UC Berkeley EECS 70 - Tarang Srivastava Lecture 2D - Slide 10



What makes prime numbers so special?
52, — 2-2.3
1. Building blocks of all numbers « all numbers have a prime factorization

2. Given a prime p any number that’s not a multiple of p is coprime to p
i.e. ged(x, p) = 1for all x that is not a multiple of p.

Thus, the inverse always exists in modulo p

Wanu,\\aa M wo 9 p Jloranies et N iSio1 *L@ﬂ" alwop ygagmlr

; s >
/ 0/ P/;_P/ 3p 26(‘04

Geloly Feld 02 Pz 2pz | (nedp
GECP)
w109 P
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Fermat’s Little Theorem Examples

Thm: For any prime p and any a in {1, 2, ..., p-1}, we have a?1=1 (mod p).

Examples: 4% (mod 7), 4*? (mod 7) (w2 7)
7
7 s poim 4"> = (y*) by FLT
o 7 oz

TR (wod 7 -

= = ) Z |\
W-y-y- Y. .$.y
L/lr_é. W -

[ l

2 -2 n229= | ime2 7)
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Fermat’s Little Theorem Proof

Thm: For any prime p and any a in {1, 2, ..., p-1}, we have a?1=1 (mod p).

Proof:

\q) 261/ 351/ ¢ ey

lae 28+ 3~ - -

(p-1) &

cp-Ne

"2“3"' @~|>“ A - A

)

"7—)»/[3-15» a Pl

UC Berkeley EECS 70 - Tarang Srivastava

af!

o=
>

(3]

]

)

5 A NanﬂWaa o~ 1, 23, P

(‘ Lo 3. \.(F_‘)

]« 23 --. (V'D

28— 0

Qued p )
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Chinese Remainder Theorem (CRT) Example

Find a x in mod 30 such that it satisfies the following equations
x =1(mod 2), x =2 (mod 3), x =3 (mod 5)

ideal w= &~ + b
0= ([ Mol 2) ~
1/ = Lv«obsb/
oz 0 a5y
beess - a - 3.5 =5

v
w= [St20 TP 53

UC Berkeley EECS 70 - Tarang Srivastava

2 (|
+ C

b= © (MOQZ) e C-o o Q"'NQZ.)
bz 2z Ww3) .~ C2 o Q«w’_z),/
= O o S ~

() €z 2 bradsy 7
b= 25=1(o L= 232 ¢

¢
b= 2-2-3 z 26 (= 2'3\% = 1@

v (5=
Wwed 3 > = 2 wioo 30 —

=> [23 (250 | <5
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Chinese Remainder Theorem

Chinese Remainder Theorem: Let n;,n,,...,n; be positive integers that are coprime to each other. Then,
for any sequence of integers a; there is a unique integer x between 0 and N = ]'[f:l n; that satisfies the
congruences: /}

(x =a; (modn)

P«‘odagi‘

{x =a; (mod n;)

x =ar (mod ng)

&I\N/\ h I, Vl'Z/ s ) MK W"i— ax LQfﬁ"YQ_ ""D ewa Of((/‘. N': ”.('n:,“"”((

3’ 7} \)n}q;aa- S2) o e & % ®, ..\/N-5 Fhat sSadifg ol e
QALUQ'{'\\OB)
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gcd(x, y) = ax + by
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Lecture 3A:;
RSA

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Read the Weekly Post 77 Wl Gpeds
e HW 3 and Vitamin 3 have been released, due Thursday (grace period Fri)
e HW 3 covers last Wednesday, Thursday and Today’s lecture
e Any topic that’s out of scope in this lecture will be in
o You are not responsible for these topics, theyre just here to give context
o These topics will be covered in CS170 and CS161
e In this lecture, we will use small prime numbers as examples but in implementation

we use large prime numbers (256 bits = 10”” or more).
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Alice and Bob

Alice and Bob wish to send messages to each other privately.
Eve is able to intercept and read the messages.

How can Alice and Bob encrypt their messages, so even if Eve intercepts them she cannot
understand them (i.e. decrypt).

A\I&L YA —_ gb}
£\ a I
/Q\ \ : joi
\\ / -
~ \ Ca
\ /
_ 5
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"‘\'Do £z gﬁyh@s‘
b MQOQQNQ‘(

How can Alice and Bob encrypt their messages, so even if Eve intercepts them she cannot
understand them (i.e. decrypt). Frcdpm’ n B ad Hie

Using a Codebook

t — Osl 1/1.40{, ‘(o ajree oy
(Jw‘o‘a o A (oobeook ]:Z_(_\o'e 0
Cose oo _Plice_ \ Bab
A I L i K g2 0
o j ¢ ABC > KL
c —> = 2)

P —=F M "
: Agc
2 = B8

Cue
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Paot |le
Public Key Cryptography Plee gueries O codaberle |
Alice generates a Public Key (K), and a corresponding Private Key (k).

The public key K is known to everyone (including Eve), the private key k is known only to
Alice. Auce  pISOS H4iS

Anyone can encode their message using the public key, and send it to Alice.
Only Alice knows the private key, so only she can decrypt the messages sent to her.

f\mzoa. Uaous
() = 12 enxnphion frehia)
Eob B J A e B
Wn.ssvcﬂ'-
\/ 3= Pe in daryptiey Breitr
bow dpa> AUt sud Delgd = 5e
o \MOSSG'?-L Yo Bob Z E\k’,

Bol cCotakes S own f&b\kk(;y

UC Berkeley EECS 70 - Tarang Srivastava
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RSA
Alce Joes Ta Follow

Setting up a Public Key
Pick two large primes p and g. Let N = pq

Choose an e that is coprime to the product (p-1)(q-1) ges-Le) p-1Xa)) =
Compute the private key d = e (mod (p-1)(q-1)).

Announce to the world the public key: K= (N, )= Loth to weale
* 7 WMESE e P v ( \)] o~ ’:ob\‘c. l.ceY

®’Encrypting Messages
Let x be your message. E() is the encryption function. Send E(x) = x (mcoﬁti N).
heciNEs & messys
4 Kfiecrgﬂgtlng Messages RIS St

Let y be the encrypted message. D(.) is the decryption function. D(y) = y4 (mod N).

Why does this work? powlelay

Decrypting an encrypted message returns original message. D(E(x)) = x C%o_ )dk Q‘" o) H)
PLEEY) = D) 2 ()™ = 1 (411

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3A - Slide 6



Code ppt P oo pg fow M7

Summary Questions

Pick two large primes p and q. Let N = pq

Choose an e that is coprime to the product (p-1)(q-1)

Feope

-A’lfu Bi—k/ Eve

Alice Was o {qu\tc

(M)

Compute private key k = d = e (mod (p-1)(q-1)). Pj K
Announce to the world: K = (N, e) B s
Encryption: E(x) = x° (mod N). d 5 S a' o Wmex¥ie X
Decryption: D(y) = y¢ (mod N).
rivate Ke n Encryp.tion Decryption
N € p and q d Private Key Public Key Function Function ML”D‘C., . Yy
Who wd’" Uﬂ’ﬂoﬂ/ Alice Atice Alice EIIQ“[MQ Evapoe Alice BobY Ewryone
knows | @ Apler
A\l
0o | p\woose _ A
r::WOsQ’ {; \arg® A‘.: 3| k= @NY | Ks (M) Eb>= ™ | Dl 1& B 'i‘”% £
- = P w - = = (5 ) = Bl
Definition N P 1/ e ;?\“; ‘w;wzs L(.f")“ (M (uué N) ‘/\‘::‘s:‘& 3=

UC Berkeley EECS 70 - Tarang Srivastava
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RS A EX am pl e Pick two large primes p angLet N = pq (/)

Choose an eVbat is coprime to the product (p-1)
Compute private key k = d = e (mod (p-1)(q-1)).

Alice Setting Up Public Key Announce to the world: K = (N, e)
_ - Encryption: E(x) = x* (mod N).
pP=" )i"_’ 1" Nz 7-0=727 Decryption: D(y) = y* (mod N).
e coprive to (-2 -0 = 4o oy + b0 = 6o
2(t) « 6o0loy = 7
e=3 A= U3 2(-2y + gocl) = v
7(ay +66CY = 3
Pustic: twey 1= (Noe>=1077, ) | =17 € 60(2) = |
A-l
7 z2-1725 45 (ma D)
Bob Encrypting Message Alice Decrypting Message
wn = 2 2 mssaUC \st‘ D(&3= Dls) = 1% we 77
EGS 2 EG) = 27 v 77 5| J/ eptalet Spoang
4
272 128 2 51 wmad 77 By =2 =2 = Y

4 =51
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HMAMN  Stibg
Why does encryption /decryption work?

Thm: For every x in {0, 1, ..., N-1}, (x®)%=x (mod N). (i.e. D(E(x)) =x) FL1.
Proof: . he 2., P13
Notcce +rok  dz € wod (p=1)(g-). So, €A1 wed P0G3-1)
ed.= ke Cpa-1> + | , kez DLEED) = 2
We wort o glowe et o™y ke N B ko wad
c .
—x% To wed N . Shee, p ok g9 o pri e
omd N= P9 T& we gloo Yot o (L G P)
a0 (moﬁ%) e s =0 WmoN),

We wish o slow VAR 0y
Cose) - 2 S a wollpe P p dn  p Jiudks catn dle defes

(ose2: = 5 Mt a mwitfe se e S, P15 wod P

Az ) wmed p

wep-1DCg-1) «|
-

2 \kan)
Se by FLT M(x-"') . -x z0Wwlp By CRT S g A

“®P e ez xxzop (wdp) ¥ 8
Yoo can apply e (detial arqomIt do 9. TwS, wa M jon.
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Why can't Eve reconstruct the Private Key?

Idea: d = e (mod (p-1)(q-1)), but Eve knows e so why can't she just find the inverse?
E\)o_ ﬁoeSALP lrow (Pvl) o C‘Z"‘_) al” g

f-0-g-1)

E\} Q. OM{ K nows N
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Why can’t Eve then figure out p and q?

Eve knows N so why can't she figure out p and q using that?

We showed that every number has a prime factorization.
That is, given a natural number n there exist a unique set of primes such that n is equal
to their product.

NP HAED £sim)

Finding this unique set of primes is hard.

What does it mean for a problem to be hard?
In this class, we will say that if the best solution is as good as guess-and-check it is hard.
To find the prime factorization you would have to try every factor for that number.

Pvws. NP (&170)
Is there a faster algorithm to find the factorization?

Swals Abarﬁ\w
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Why can't Eve just take the log?

Eve knows the public key (N, e). Eve then encrypts some message y = x° (mod N).
Then, the decryption is

x =% (mod N)
So, why can’t Eve just do logy on both sides to leak d the private key?

This is called the discrete-log problem and it is hard. There is

Examples:

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3A - Slide 12



How easy is it to find large primes?

Theorem 7.3: [Prime Number Theorem] Let 7(n) denote the number of primes that are less than or equal
to n. Then for all n > 17, we have 7(n) > ;. (And in fact, lim,_,. Mo), 1.)

n/lnn
If we want a 512-bit prime number

Theorem says there is roughly 1 prime number every 355 numbers.
For 1024-bit numbers there’s a prime every 710.
Just try random numbers and you will eventually find a prime number

@Y(?o)
M> CS6(A

l

Qlygwy  csto
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Can Even find a match using the encryption function?

If Bob encrypts some message y = x® (mod N). Then, could Eve just plug in x’ into the
encryption function to find a match?

No! For 256-bit prime numbers that is 22°¢ it would take you 37 times the age of the
universe to arrive at a guess for a x’ = x.

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3A - Slide 14



In Practice Sending Same Message Twice

Notice that since all the numbers are fixed, if you send the same message twice it will be
encrypted the same way.

In practice, usually append a counter to the message so each message is unique.

e« !‘I ”

—
OLL*VZ"
X,

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3A - Slide 15



You use some derivation of RSA every day

B 1SRG Root X1
L. ¥ R3

L. B www.eecs70.0org

Public Key Info é
Algorithm RSA Encryption ( 1.2.840.113649.1.1.1)
Parameters W‘
Public Key 256 bytes: AB C7 1B OC ED C6 01F8 ...
Exponent 65537
Key Size 2,048 bits
Key Usage Encrypt, Verify, Wrap, Derive

Signature 256 bytes: A3 59 B1 DB 9ADB 92 91...

er 1 Key Usage ( 2.5.29.15)
Critical YES
Usage Digital Signature, Key Encipherment

Basic Constraints ( 2.5.29.19 )
Critical YES
Certificate Authority NO
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You use some derivation of RSA every day

@ github.com

O Search or jump to... Pull requests Issues Marketplace Explore

‘rhﬂ Tarang Srivastava Go to your personal profile

Public profile SSH keyS New SSH key

Account
This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

Appearance l
Accessibility Macbook Air é./ HZ ‘ r
4

Notifications SHA256:6€E7rupZTo78nKhMr/3317WT93E9xqgPujDsVSCkvSM

Billing and plans

We designed iMessage to use end-to-end encryption, so there’s no way for
Apple to decrypt the content of your conversations when they are in transit
between devices. Attachments you send over iMessage (such as photos or
videos) are encrypted so that no one but the sender and receiver(s) can
access them. These encrypted attachments may be uploaded to Apple. To
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A little story to end...

In 1977, Rivest, Shamir and Adleman publish the RSA algorithm you learned today.

Later that year, the British Intelligence Agency (GCHQ) declassify that they had
developed the exact algorithm secretly in 1973.

Why do all this?
e Your company will ask you to make sure their data is secure
e You will want to make sure that your data is secure
e Most importantly, you have a moral responsibility to do so
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Lecture 3B:
Polynomials, Secret Sharing

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Read the Weekly Post

e HW 3 and Vitamin 3 have been released, due Thursday (grace period Fri)

e HW 3 covers last Wednesday, Thursday and Yesterday's lecture.

e In this lecture, we will use small prime numbers as examples but in implementation

we use large prime numbers (256 bits = 10”” or more).
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Finite Fields

Recall, that we talked about mod as a space.

When operating in a mod p where p is prime, we are working in a finite field.
A finite field is just a space of numbers, where we can define addition, subtraction, multiplication and
division for all numbers in that space.

wath 134G
We will call this finite field a “Galois Field,” denoted GF(p)

el P

(FCP)
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Keds
Polynomials in GF(p) |

A polynomial in GF(p)

f) =axi+a, x4+ . +ax’+ax+a, (mod p)

m———— )

is specified by coefficients a ...,
f(x) contains point (a, b) if b = f(a)

Polynomials over reals: a, ..., a, € R, use x € R (‘/’F('S)
Polynomials in GF(p) have a, ..., a, € {0, ..., p-1}, use x € {0, ..., p-1} '

3 ! I o
Example: f(x) <D -2x = 953 £ 0™ + 2% O

As = 2. N |
A2 = D 3 c‘—H—a/MS%’ € : I
ay= -z EEOZEY-2 ()59 N o

(2,%) 7 Y T 1 1 T
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Polynomials in GF(p)

A polynomial in GF(p) - gesjee - A
f(x)=a dxdér'a X L ax®+ax +a; (mod p)

is specified by coefficients a ...,

f(x) contains point (a, b) if b = f(a)

The degree of a polynomial is the highest exponent in the
polynomial

We say that a is a root (or zero) of a polynomial if f(a) = 0

Jeret
£ 4
Example: f(x) = 2481 2

UC Berkeley EECS 70 - Tarang Srivastava

27.3 —2%

&

Lecture 3B - Slide 5



Degree d = at most d roots wPbe 20 2

Property 1
A non-zero polynomial of degree d has | | ;
at most d roots FLT a P4, wes? p
0‘6 [ - _ 2 1 1 2
Examples: (s < P13
G =
o= o Pesy = 7 NENEN NN
(]
¢ é @
® o o ] 9

ﬁffeoﬂ—ﬁr,za4ﬁ$.zaQ—ﬁquse—
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d+1 points = unique degree d polynomial

-— —

We say a point is a x, y pair where y = f(x)

Property 2:
Given d+1 pairs: (x,, y,), ..., (X4, ¥4, With all the x, distinct, there is a unique polynomial f(x) of degree

(at most) d such that f(x,) =y, for1<i<d+l
Key A

Ehere is a unique degree d polynomial that goes through a given set of d+1 pointgz

Example: | | (L2) | (,2) |

Hven 3 Pobﬂs — Daﬂm &
Pp"/n%ca(

ponts !
E&1_0)
(o ®)

C—‘) 7/> i i -2 i : . -2
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. . . . Sio
Implication of Properties on a Line JPQ ) ity
Suppose we have some linear polynomial (L‘ > \= m 7Y

fx)=ax+a,

Property 1 says that if the line isn’t just f(x) = O (x-axis) then it has at most 1 root.
Property 2 says two points define a line.

How to find a line that goes through a given two points:

Example: (1, 2) and (3, 4)

J= Mo b {ou= e+ |
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Polynomial Equivalence

We state that two polynomials f and g are equivalent if for all x in GF(p), f(x) = g(x)

You can also show two polynomials are equivalent if they have the exact same

coefficients. -(»6-»3; .
Examples in GF(7): I = 2l A 2
fix)=x+1
fHx)=8x+1 €21( (me? 7))
fox)=x+38 §=z\ ((,«ob?)

x)=x"+1
f4) by PLT

L‘- x ’l:’, 70' ®) - |

#qé o)z (
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Polynomials from Points via Interpolation

WelS

Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, O)

PC"’D = Jr e + Jo o t Uy B3 (%) PCw) Compirss hege  pOVES

o o %

DGV =
I ¢ 2=

A ey 0em20em3) | 312 )(mm]) = W= ISxtiPa 34 3
a-»>0-3)

(e (2~ 3)
-0 (2-3)

Q,_C"') = = Q@40 3) = Yre®+se +2

. D062y SN — X 2
D5 L0 = G0 (32> © 3 (we-D > 2y = "Gy 44 2 3aTtwt|

poe> = 2 (34+3) F (Ui * (32 2]

= 1xettw iy

UC Berkeley EECS 70 - Tarang Srivastava
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AT+ 1=z v

20y t284 2 Y

2(3)" + 3z p
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Polynomials from Points via Gaussian Elimination

Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, 0)
?

flms = X+ @e + q,

inpob

1l

I\

2
3

o
't
o

UC Berkeley EECS 70 - Tarang Srivastava

\1
612_(,')2'(' A (1) &« A / 5

A, (2D t A (D+ A,

a, (3)?

t a(3) +a,

2

—
-

S

-
—

A + Ay <+ dq
Ua, + 24, + O,

A4, + 32, t 4,
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Proving Property 2

Property 2: Given d+1 pairs: (x,, y,), ..., (X, ¥4,,) With all the x, distinct, there is a unique polynomial f(x)
of degree (at most) d such that f(x,) =y, for1<i<d+l

“d+1 points, define a unique degree d polynomial”

1.  We showed the existence of a polynomial via interpolation
2. We need to show uniqueness
ré"v) (%S o
Proof for uniqueness: W  d5 42
Assuwe {‘AP contmdietivn  Tat O’“""’\ Sowe, O+l f"ws

Alaoss 2000,
+we oxlt two kﬁoe,e a. fal-/nbmo,l_s fuat Ccortet T Coe
vl pows ) call then fcm) end g LD, Shee,  p3# 4cx)
POO-40e +o . Notia feh rc»)-zcx.) R )e'yaz)f)ynomh(
at moeSr . Fye '>C*’)-Zta,):.-o fer = ovl Po"/HS et ral;

Shae . TUWIS > & sorddictoy Sl oy 7‘"""“‘7 | ped-9e0
can hae. 3 oS o uadt,

UC Berkeley EECS 70 - Tarang Srivastava
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Long Division

It is possible to divide polynomials. That is dividing p(x) by g(x) results in
p(x) = 4’ (%) 4(x) + 1(x)

Example: p(x) = x>+x>-1 and q(x) = x - 1 7 A 'P(x)
gootiern R~ S QL)

%E 4+ 2% & 2

el W3kt Qe - | (i'(*&a P Y

'f(’('}‘ %2 | J "
O t2xZ¢0x—|( > =
~(23* -2 Q,)
O +2x ~|
-L‘Z.:L~2_ )
|

UC Berkeley EECS 70 - Tarang Srivastava
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Proving Property 1

Property 1: A non-zero polynomial of degree d has at most d roots
We will prove this by proving these two other claims.

Claim 1: If a is a root of a polynomial p(x) with degree d > 1, then p(x) = (x-a)q(x) for a polynomial g(x)
with degree d - 1

Claim 2: A polynomial p(x) of degree d with distinct roots a,, ..., a, can be written as
p(x) = c(x-a,)...(x-a,) where c is just a number.
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Proving Property 1 with Claim 1

Property 1: A non-zero polynomial of degree d has at most d roots
Claim 1: If a is a root of a polynomial p(x) with degree d > 1, then p(x) = (x-a)q(x) for a polynomial g(x)

with degree d - 1
PO = (e 6 L= X " Gx)

it a s a (eab

PC Ny =0 — (o —a/\;bc &)+ Vley
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Proving Property 1 with Claim 2

Property 1: A non-zero polynomial of degree d has at most d roots
Claim 2: A polynomial p(x) of degree d with distinct roots a, ..., a, can be written as

p(x) = i(x—_al)...(af_:ad) where c is just a number. )(:L— 2e + | - (=1 )( n—()
B‘i Mowetier 6N Jéyﬂ&

1. S‘l—e()..
PCW_) = -1 i("f) ad ‘af Cloven | 70 Lras 27710,& ol -
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Secret Sharing

There is a code that can be used to launch nuclear weapons.
We don’t want this code to be accessed unless k of the total n military generals agree.

How do we solve this?
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Secret Sharing (cont.)

There is a secret code that can be used to launch nuclear weapons.
We don’t want this code to be accessed unless k of the total n military generals agree.

How do we solve this?
1. Construct a degree k-1 polynomial. Call it p(x).
2. Encode the secret code as p(0) = “secret code”
3. Give each general a point that p(x) contains.
a. i.e. General #1 gets (1, p(1)). General #2 gets (2, p(2)). So on...
4.  When any k general agree. They can share their points and they will have k points to

reconstruct a degree k-1 polynomial. Then, they just plug in p(0) to find the secret.
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UC Berkeley EECS 70 - Tarang Srivastava

Example of Secret Sharing

2 g L s /¢
Tarang wants to set up a system that if any 3 of Michael, Jingjia, Nikki, Christine, Jet, Colby or

Korinna agree then the midterm solutions will be released immediately.
Suppose the secret code to the solutions is “6"

What degree polynomial does Tarang need to construct? 2

7 C,«o-\— fAcl.Jc)n'a seceet)

How many points do we need to generate?

(Y = (< (0= v
P Y& 2w + 6 P < L E()
Aichael = b, p>) = O ) 1Fr204+€) = Cl/L)

3 v\q,] (q = (2 F""'>\ (2, )
N Kkl = (3 pL) (3,02)
Chskle = L1 pe) - (0 2)

\

¢
(‘ (
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Example of Secret Sharing (cont. ) GECD

Suppose Jingjia, Nikki and Christine agree to release the solutions before the midterm. How would

they do it? @) o
Ln) . . )

Thgie (200) P = 5770 * 602« o570

Charistie (4 2) A - *T2)(%-3

N Rk Ls/o) 1 (q-l>(q\:¢_~)

A= e C\c.-3>

v?(u D 2 Y G2y (x-3)
= w20 A

Pley = € (A
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Counting Polynomials

Assume for all these questions were working in GF(p)
How many unique degree at most k polynomials are there?
How many exactly degree k polynomials are there?

If we wish to find a degree 5 polynomial and we know only 3 points how many options
do we have for the polynomials that currently go through our 3 points?
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LLecture 3C:
Error Correction

UC Berkeley EECS 70
Summer 2022
Tarang Srivastava
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Announcements!

e Read the Weekly Post
e HW 3 and Vitamin 3 have been released, due Today (grace period Fri)
e Tarang’s Last Lecture, Michael will begin starting next week
e Midterm is 7/15 (6-8p)
e Midterm Scope
o Notes: 1-11
o HW:1-4
o Lectures: 1A-4B

o Discussions: 1A-4B

o  Topics: Up to and including countability. (Computability will not be on the midterm)

Midterm format will be different from previous semesters. More proofs.

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3C - Slide 2



Review

Property 1: A non-zero polynomial of degree d has at most d roots

Property 2: Any d+1 points define a unique degree d polynomial :] Wl (9l
Seceet Sharday

Claim 2: A polynomial of degree d with roots a,, ..., a, can be written as p(x) = c(x-a,)...(x-a,).

From Discussion 3B: W — 2+

if f and g are degree x and degree y then (2¢-1yCac—0)
e [+gisat most degree max(x, y)
e fegisatmostdegreex+y
e f/gisatmostdegreex-y
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Review (cont.)

Secret Sharing:

Problem: We need any k out of n people to agree to unlock some code.

Solution:
1. Create a degree k-1 polynomial p(x) N>y
2. Encode the secret in the polynomial (p(0) = “secret”).
3. Give a point that the polynomial contains to each person (generate n points)
4. Any k points can be used to reconstruct the degree k-1 polynomial p(x)
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Review of Gaussian Elimination

Why do d+1 points define a degree d polynomial uniquely?

A degree d polynomial has d + 1 coefficients: d+\ Coeth cwrts

U ) n
flx) = ax+ aalll_lxd‘1 +ot (:%Zx2 +ax +a, (mod p)

So, we need d + 1 equations to solve for d + 1 unknowns.
We get d + 1 equations by plugging in the d + 1 points.
( L 5 .
3911“ 3: As 23« A% A% «de

P>

Q ¥
J

As(03> 1 d (0t 4 0 ¥4, = \
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Erasure Errors

Send some message across an unreliable channel.

The channel randomly drops k packets.
Sl (ecieJ”

3[[1]/5]|0] =———— 1(]15

How can we recover our original message? Polynomials!

We want to encode our message into a polynomial, and then generate k extra packets.
Then with any n received packets we can reconstruct the polynomial and get the
. ,
original message. - pls P(‘)
pox et

90¢s
Fwsogh Y Y°‘"‘5 III@@I

P“)

Ci C2 C3 Cy 5'5 (¢ .
@ encoded message . E .@@h
m,; M2 Mg My - C3 €4 Cy
74 5 _£
l to protect aézalnst k erasures.

n -
Construct a polynomial of degree __
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Bob sends message with erasure protection

Mhe Voz 3 Y
Bob wants to send the message “315 0” to Alice. Vel @
Bob knows that at most 2 packets will drop when sending the message to Alice. i iy s Ty
n = message length (4) k := maximum erasures (2)
Message “3 15 0” become points “(1, 3)” (2, 1)” “(3, 5)” “(4, 0) , v
Find a degree 3 polynomial that goes through these points in GF(7) f"“’s (2 \ix)
D intanpelatio 2) bursicr Bliwhein,

FC'»)- A ¢ bt Cw +h
3 2 AlB+L)2sc(D+ A
| = a(2)34bY 4 el v wwD bot 2o t3ced =5 7
A4 2bd Uetd =0

poxd= Wl s s

What are the extra points Bob generates?

3156 6 |
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Alice receives message with erasure errors
SEIE]] 6F(7)

Alice receives the points (1, 3); (3, 5); (4, 0); (5, 6). How can Alice reconstruct the polynomial?

Pc-u.)-_- a3 3 + bz e+t d

3 = 2 =3 bt ctd PLd= 363 4 24 5
S ba Xt 3caq a:(
A =4 ¢2) =
O ~ A + 26 *t\(c;"d\ -7 =0 P ’ l
= -+ YL +S¢ + =5
6 b ¢ +ad 3056

]

UC Berkeley EECS 70 - Tarang Srivastava
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General Errors

Send some message across a noisy channel.
The channel randomly changes (corrupts) k packets

ereor
my M2 Mg Ty T2 T3

o s
Erco”™

\\\ ewd>s (e-1) ¢ o
This is much harder that Erasure Errors because...

1. locate where the error occurs

2. recover the correct value

How can we recover our original message?

Erasure Errors: Send n + k packets to protect against k erasures
General Errors: Send n + 2k packets to protect against k corruptions.

UC Berkeley EECS 70 - Tarang Srivastava Lecture 3C - Slide 9



Solution: Berlekamp-Welch

Message: m,, ..., m_(length =n)

Sender: Sawt o>
1. Form degree n-1 polynomial p(x) where p(i) = m, ecﬂi"'o
2. Send p(l), ..., p(n + 2k)

Receiver: cood bl

1. Receiver,..,r, ., CoNP

Solve n + Zk equations, q(i) = e(l) r. to find q(x) = e(x)p(x) and e(x)

2
3. Compute p(x) = q(x)/e(x)
4, Compute p(l), ..., p(n) to get original message

Here r, are the received points possibly with errors.

p(x) is the original polynomial the sender used, receiver doesn’t know yet

e(x) is an error locator polynomial. e(x) = (x-e)...(x-e,) where e, is the index where the error occurs
e(x) = 0 when you plug in a x value where error occurs. Receiver doesn’'t know e(x) yet.

q(x) = e(x)p(x). So, we find q(x) and e(x) to get p(x).
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:—e q = 1.
90 O>pM = el N
1 (y= €LdP= ebsy

Berlekamp-Welch (cont.)
Receiver:
1. Receiver,..,r, ,
2. Solve n + 2k equations, q(i) = e(i)p(i) = e(i) r, to find q(x) = e(x)p(x) and g
e(x) is error locator polynomial. e(i) = O when there is an error in

index 1
3. Compute p(x) = q(x),/e(x) 9 (1282 ecaa plns et (Y
4. Compute p(l), ..., p(n) to get original message

Cm V2 (C" ) = */'d

eliypty= ety
Cose 7 - pLidE N\,
Coefaetns elyped= el

ey (Qe-ep (e-&).- (2—€
deg PO=> = N~ o | >

dog  SC = K gx>= plrs-e(=)

_______________ edid=a
What is the degree of e(x)? ko How many unknowns? &~ < O th' T o (%
O-o v
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Bob sends message with corruption protection

Bob wants to send the message “3 0 6” to Alice.

Bob knows that at most 1 packet will be corrupted when sending the message to Alice.
n := message length (3) k := maximum corruptions (1)

Find a degree 2 polynomial that goes through these points in GF(7)

pe = 2=t 2e t|

plud= O

F(S):B
Octy
b

[3][o][e][o][3]

What are the extra points Bob generates? G G e ¢

CU 50 ) IEHE‘ encoded message ”
m: ma Mg
A5J3)
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. . . . FC7
Alice receives message with corruption errors &FCD

_—>l2][o][e][o][3]

Tv\(T2) T3 T4 Tj

How can Alice find where the error is and fix it?

a.z| a,,cw->=(lbc3+ Ot hoe + €
32
a, =0 = w46
ab tazt Q‘ + aO -‘:bo: 2 a, 20
S6, A=¢
b = 6 () >
Ayt Ry x4+ Qg Bhp = 2 ez x 46
Ay Uas* 28 «a, e ¥ (et o 3t (
b, = 4 2(%
bay+2a; ¥3a, + 4, t peu)= ecnj 2 530 ep ey
Ay L2aq Yoy + 4, = D
6“3" ‘{a-‘\ -|-s¢, {'aOJ‘ %05 l Pw)r xz.(.z‘.,
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Alice receives same message with NO corruption errors

Will Alice still get the same correct answer?

UC Berkeley EECS 70 - Tarang Srivastava

oL (>~)

3

0

6

0

3

o

E2) ar I Sex
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p(x) is unique from Berlekamp-Welch

Thm: Any solution to Berlekamp-Welch will result in the same final p(x)
Proof:

AsSsowe +web amotls  gylodtu & s E'(_m)

‘H"Q)l Satty 5'7

Vo l,. .
K () = QECL_) 1L £ peare

Q6 (ECST G ELY nEt) = g[B(Y-ac)

‘(N a 1) = / ' / I
GO < B AUy gy g,
eligey  EHIEC)
_QUGY gt

ey T gy = T
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p(x) is unique from Berlekamp-Welch

Thm: Any solution to Berlekamp-Welch will result in the same final p(x)
Proof:
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