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Announcements!
● Everyone should’ve received an email confirming their exam format
● If you’re taking the exam in-person show up to Pimentel 1 at 5:50 pm

○ Exam begins at 6 pm
● If you’re taking the exam online you should have received a Zoom Link

○ Follow the online proctoring instructions shared on Piazza
○ Exam begins at 6 pm
○ Working past your allotted time (8pm for regular test takers) will be considered academic 

misconduct
● Answer sheet will be available tomorrow morning. Remote test takers are 

responsible for printing it out before the exam. 
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Course Overview
Course Webpage: www.eecs70.org

Explains policies, calendar for OH, HW, midterm dates, schedule, etc

Course Format

Lecture → Mon-Thu 12:30-2p Dwinelle 155 (and live Zoom/recorded)

Discussion → Mon-Thu. Will cover content from that day’s lecture. 

Office Hours → See eecs70.org/calendar for location and times. Submit 
tickets on oh.eecs70.org
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Course Overview (cont.)
Software

bCourses → Lecture

Gradescope → HWs and Vitamins

Piazza → Questions, Communications, Everything else! 

Email: cs70-staff@berkeley.edu → Personal questions, extenuating 
circumstances, etc

Top Bar Attendance Form → Attendance Credit

Weekly Post

On Piazza. It is required reading every week.
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Course Overview (cont.)
Check you are enrolled in these services

bCourses, Piazza, Gradescope. Please email cs70-staff@berkeley.edu if not 
enrolled. 

DSP

You should have received an email from Nikki Suzani. Please email us if you 
have not. 

Incomplete

If you are finishing an incomplete this semester please email us with the 
conditions of your incomplete.
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Assignments
Homework → released weekly on Saturday morning

Due every Thursday. No penalty grace period until Friday 
11:59 pm. Graded on accuracy. 

Material from last WTh and this MTue

Vitamins → released weekly on Saturday morning

Due every Thursday. No penalty grace period until Friday 
11:59 pm Graded on accuracy. Instant feedback on your 
answers.

Material from this week’s MTuWTh lecture  

Discussion Attendance 

1 point for each discussion. 13 needed for full credit 

Exams

Midterm 7/15 Time 6-8p, Final 8/12 Time 6-9p. 
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Discussion Attendance 5%

Vitamin 5%

Homework 20%

Midterm 30%

Final 40%

we
will

drop
10M£
+80%6

- - ↓

No alternatives



Website https://www.eecs70.org/
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Instructors
Tarang: First third of the course

Michael: Secord third of the course

Jingjia: Last third of the course
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Collaboration
We highly encourage collaboration! So, let’s define what that means. (Professor Sinclair)

Discussing approaches to problems is encouraged! 

As long as you reach a good understanding of the final solution

You should not allow concerns for cheating to get in the way of discussing problems with 
your peers 

How we recommend collaborating…

Post on Piazza and read the relevant homework threads

Come to OH. It’s okay to just chill there even if you have no questions

Cases of Academic Misconduct will be dealt with by the course staff and Center for Student 
Conduct
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Why CS70?
Programming + Microprocessors → Superpower
What are your computers doing? 

Logic and Proofs! 
Ex: Induction = Recursion

What can computers do?
Work with discrete objects
Discrete Math → immense applications

Computers learn and interact with the world? 
Probability → Ex: machine learning, data analysis, robotics, 

Our goal: teach you to think more critically and powerfully…and to deal 
clearly with uncertainty itself.
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Tips for CS70
READ THE NOTES! READ THE NOTES! READ THE NOTES! 

● Reading mathematical text is not the same as reading regular non-fiction. 
● Read non-linearly. Jump around. Keep a pencil in hand. Work out 

examples. 
● We will hold specific OH this week to give some tips on how to best read 

the notes. This is a skill we hope you pickup in this class. 
● Reading the notes takes time. Allocate 1-2 hours for each note
● There is a myth that you need “mathematical maturity” to do well in this 

course. 
● Give yourself plenty of time to think about homework problems. 
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Announcements!
● Join Piazza. Read the Welcome Post

● Discussions start today, signup link is on Piazza

● Office Hours start today, see course calendar on website

● HW 1 and Vitamin 1  have been released, due Thu (grace period Friday)
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Propositions: Statements that are true or false
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Statement Is it a proposition? true/false?

Square root of 2 is irrational

2 + 2 = 4 

2 + 2 = 3

Tom Hanks is in Forrest Gump

Tom Hanks is a good actor

2 + 2

2 + x = 5

Any even > 2 is a sum of 2 primes

Yes
, proposition true

Yes
, prop , the

Yes
, prop . false

Yes , prop *we

1-fuzzy awards
No its not pop _

Do -

←
Free variole Po -

-

Yes
, prop False



Using variables to denote propositions 
P = “I am Oski” Q = “I am Carol Christ”
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Operation Symbol Meaning Example

Conjunction

Disjunction

Negation

PANPQ
PAQ most both

I am ◦ski and I am Carol cart

be true

py @
PORK I am oshi or I am Carol Christ
is true

zp
not P I am not 05kt



Truth Tables
A way to systematically record what an operation on propositions is doing.
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AND OR

P•""f"%
"

T

"

F

T ' ≠

P
T T Tf F f T F

F T

F T F T T T T

F F
,

F F T T T

Law of the excluded middle -

.
Pis tree or >P is true (but not both)

A proposition that is always tree tautology (PV >pg
A proportion that is always false Edition 1pA >pj



Implications
If P, then Q
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P = “You like CS70”

Q = “You like probability”

if you stand in the tnhMyoget
P Q

D implies Q
P⇒Q

P Q P⇒ Q

T T T
- if you live 70

,
ten you the prob -

T F F ☆- You live CSD any if you lie prob .
F T T

p p , ] Vacuo "Y _

The fact that you like probably is
true a necessary condition for you to lie CSTO

if pigs can fly,%vyon 1h20
will get an A



Converse, Inverse and Contrapositive
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Converse Inverse Contrapositive

P •

y
" " •⇒ a

/
• ⇒ •

[
⇒ -

ay
>• ⇒⇒

yP⇔•T T F F T T T T T

T F F T F T T F F

* | , , f , f , p p , p

F F T T T T T T
T

converse : if you
lie pros , , ten you

the

>☐
P⇒Qra⇒e ± p⇔Q

Inverse : P isf and any if On

contrapositive Pitt Q



Logical Equivalence
Propositional formula is an expression made up of propositional variables 
combined with logical operators. 

Two propositional formulas are logically equivalent if they have the same 
truth table. 

Example:
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P Q P⇒Q >a _⇒p > PVQ

T T T T T

T F F F F

Contapos
.tw

is logic"Y T
T T

ego
,owt

'°
€ T

T T
T

tee
implication

F ,=

p⇒Q = >On ⇒ >P = >PXQ



DeMorgan’s Law
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>(Pre ) I TPVTQ
>(Pva) I 7pA >On

É!T T T F F

T F F T T
1) PACQVR) ≥ ?

⇐ | , , | , gpa.gg ,r, ≥

F F F T T
3) (PAQ)V(Rts)



Predicates and Quantifiers
Predicates: Statements with free variables. Ex: Q(x) = “2x is even”

Predicates by themselves are not propositions. Adding a quantifier and a 
universe allows us to state multiple propositions at once. 

Example:
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Quantifier②↳ foray see
rivers

H (22 is ever)
- CHUEN ) (2x is

even )

far all natural numbers n, n2 + n -141
is prime

Fron Note 0 :

Fr EeIN = 0, I , L, ] . -
,

I = . -7 ,-1,91 ,
'
- Ctn C- 1×1 ) (attn -141 is price )

2/-1 = 1,213,4 - . 02+0+41 is put
QI : Play for pig C- 21

12+1 +41 is preIR = real honors

22 -12 +41 is pales= { Bio ,☐}
i.



“For All” and “Exists”
“For all” means for all the values in the universe P(x) is true

“Exists” means there is at least one value x in the universe for which P(x) is true
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÷

Practice
"

Every nonzero rational number can be multiplied by some rational]number to get 1 "

"get min
( Hq c- QUO } ) ( 3- see Q )( q.se -_ 1) }-

in

-

Iq c-☒ nkrq -40



Logical Equivalence with Quantifiers
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Pta, y '
-.

IN
yn Fy Pliny )

I Fyfn Pogy)
Mm mm 3.sees >y

the Akter anultipbs
of
x are 7

move the yk
Hn Fy Poesy) ≠ y Play) totiert function

↓ ↓
soon a k PHYS = y > atire is always
trait all the

a biys
"

nurses are grew
V^Mʰ = Z

hunter turn it

y >a



DeMorgan’s Law for Quantifiers
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> In C- 5) Plas = C-se Es ) 2 PG)
Example :

PCR) K2 > to

5={1/53,4}



Review
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Lecture 1B: 
Proofs

UC Berkeley EECS 70
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Announcements!
● Join Piazza. Read the Welcome Post

● Lecture is posted under “Media Gallery” in bCourses

● Evelyn’s 6-7 pm discussion is now hybrid

● Signup and attend discussion

● HW 1 and Vitamin 1  have been released, due Thu (grace period Friday)
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Shard be up crowd 4pm
Lived on website

-



What is a proof?
A proof is a finite list of statements, each of which is logically implied by the 
previous statement, to establish the truth of some proposition. 

The power here is that using finite statements, we can guarantee the truth of a 
statement with infinitely many cases. 

Advice: When writing proofs, imagine a very skeptical friend is reading over 
your proof who questions every statement you make. 

Since you’re learning, try to be more formal in your proof writing
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P⇒R ⇒s⇒7
. . . . ⇒Q

Do it during lecture

↓



How to prove things?

You can also replace the proposition to be proved with something logically equivalent that has a different structure. 
Example: 
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Structure How to generally prove it

=

PAQ Prove P and Prove Q

(p ⇒ Q ] Assure P is true, then show the Q follow
cats tree]

PiffQ Prong p⇒Q aoe Pray Or ⇒ p
p ⇔ a

refs) Pfa)
Provide some RES ace prone per)

#sets ) Poe) let u be arbitrary ins and poe pay

P⇒Q
,
>PUQ >②⇒ >P

Contrapositive



Direct Proof (Example 1)
Theorem: For every natural number there is a natural number greater than it

Proof: 
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Let me be an arbitrary natural number. Goal : P⇒Q
Observe that net is also a natoal www. Method : Assure P

:siree
,
Ntl >u we Uae found a natural :

step

number greater than n
. Since

, n
was Condole Q

arbitrary the statement holds Hn c- IN
.

Things we assured

1) n -11 is natural

2) n-11 > a



Direct Proof (Example 2)
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Lesson: 

Alb if no remainder
p⇒ on

①divides a
Scrtach work

•

alb alc

Let a,b, c EZ be arbitrary ad assure

b=aq ,
C- aqzalb ad a) C

.
So
, by definition

b=aq
,
and C = aqz for some q , ,qz C- 21

.

b- c = aq , - aqz
They b- C = aq ,

-

aqz = acq , -qz ]
.
Since

= • (91-92)
9
,
- qz C- Z it follows by definition that TE
alk - c) ↓

Extract}£-

i. ↓

Use your definitions f
a / Cb - c)



Proof by Contraposition
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Lets try directly
v2 = 2k n= Ek ?≥

Contrapositive

_p -

ish Goal :p⇒ a
Q Method : prove >Q ⇒>PLet u be an integer . We will proceed by Cortaposae :

contraposition ad show that if n is odd, if n is odd / ten WZ is odd

then m2 is odd
. By definition, h = 2kt IRKED U=2Ktlthen m2 = UKZ -14kt I = 2 CZUZ -12k) -11 -

since, 2h2 -12h C- 21 by defirutm nz is odd
.

U2 = 4kt -14k -11
☐

NZ = 2 (242-124)+1Useful Hae Plus ⇒ Hy Pcyj TEE
>☒ Ply) ) ⇒ >*septa) )
7g > Ply ) ⇒ In >pay



Proof by Cases (Example 1)
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Scratch work

m3-n = 3g
Goal : P

nluz- 1) = 3g
Method : RN.r.VRni-vencn-DC.net) = 3g

Let u c- IN show R
, ⇒D

i.
CASE u = 3h WE IN Sho Rn ⇒ P

23 _ 2 = 8-2--6
A. 3-a = (n ) (n -1) (nil ) 33 _ 3 = 27-3=4

= 3hL 3h -1) 13h41 )
2 (2- 1)(2-11) = 6 = 3.(2)

'

II tires 31h3-4 Soe

3 (3-1) (31-1) = 24 =3(8)Case 2 : n = 3h - , *

- 414--1) (4-11) = - -

i- n = ③n - 1) ( 3k- i - 1) (31-1+-1) 515-1 ) (5+1)
- of↳ 31h3- n f( 6- 1) Coed ÷

Case 3 : n = 3kt / -713£ (2-11)

n3 (341-1) (34+-1-1) (34+1+1)
~ ↳ 31h3- n



Proof by Cases (Example 2)
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re iff a- Pq

-
. _

Case 1 : 5252 is rational
. Then, we are done

, k=y=R
Case 2: 5252 is irrational

. Let u= Vik and g-
-Fe

a- -
set = Erik)ʳ= jzrz.fr

= 522 = 2

Since 2 is ration fer x-nfikady-f.ve/ue found an examplethat satisfies he claim
.

Assured Fe is irrational



Proof by Contradiction
A proof by contradiction proves a proposition “P” by first assuming  “not P” is 
true. That is, the opposite of P is true. 

 Then, it follows logical steps to arrive at a contradiction by proving both some 
proposition “R” and “not R”. 

Why does this work?
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> P ⇒ RA > R =p
>P⇒F =p
↓

Goal : P 1- ⇒ p

Mean : Assume >P É[¥|¥f TIP / c-
⇒ p^

:

R is true T ! I
; ↑

>R is true
] Atwal ↑ this from

tree what proofmust

go
here.



Proof by Contradiction (Example 1)
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¥
Iq = I

[
> Rq

share no commas

factors
Assume for contradiction Jot V2 is rational . Tbh , by definition

jz = far sone P,qEZ
.
2 = qP_{ ⇒ p2= 292 . So

, by def .
P2 is eaten

.
From an earlier then

,
if P2 is ever /then p is ever . So

,

p = 2k far some KEZ (2h5 = 4kt = 292 ⇒ 92=242 . q2 is the every
so q is ever . This is a contradiction since pad q share

q=2j JEZ
a common factor of 2 .

Thus
,
52 must be irrational

.



Proof by Contradiction (Example 2)
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NOT COVERED
DURING LECTURE

Every non - prime umber has a

prime divisor (ash students

Assume far contradiction there are finite prime numbers
.

That is

P
, ,

Pz
,

. .
.

, Pn are all the prime numbers
. Let q= p,

• pz . .
. .

. pn
Consider q -11 . Clearly 9+1 > Pn

,
Where pn is the largest primewww.soq-iis not prime , thus it has a prime divisor . That is,

the exists some prime Kl 9+1
.

Since K is Prine , K E { P, , .. . ,Pn }
and re / q . By previous Lemma 1

, it klq and selqtl
,
then sellout -g) .

That is
, sell but only 111 and K≠ 1

.
This is a contradiction,

so there must be infinitely many prime numbers
.



                   Proof
Theorem:

Proof:
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Incorrect

I = 2

For se=y we have
-

→
divide by

zero
NZ -

Ky = x2 - y 2
Since 2e=o

xox =#Cxtyj
K = sexy
se = Zoe

I = 2



Summary

Lecture 1B -  Slide 14UC Berkeley EECS 70 - Tarang Srivastava

Proof Technique General Procedure

Direct Proof

Proof by 
contraposition

Proof by 
contradiction

Proof by cases

NOT COVERED DURING LECTURE

Goal : P ⇒ Q Method : Assure P
i. steps

conclude Q

Goal : P ⇒ Q Method :

prove >② ⇒ >P

Goal : P Method : Assure >P

pro've R
;

prove >A

Goal : P Method i. show R
,
Y

. . .
× Rn is true

show R ,⇒ p
:

show Rn ⇒ p



Few notes about what we did today
Write full proofs in your homework like we did today, but on discussion you can just write an 
outline/sketch of the proof.

No one gets the complete proof immediately, there’s a lot of scratch work and thinking before you 
can write the proof.

Remember! Every step in your proof must be justified and follow from previous steps.

Usually how things go:

1. Think about problem
2. Do some scratch work
3. Come up with solution
4. Try to write a proof
5. Realize solution is wrong
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FAQ
How do I get started? 

Think about the definitions that may be relevant. Maybe a theorem or lemma 
that was in the notes. 

I’m stuck? 

Try doing a bit of scratch work to see if you missed some pattern. Read over 
what you currently have in the proof. Try proving an easier statement or an 
intermediary statement. 

Is my proof correct?

Question every statement. Does it follow from a definition or previous 
statement? 
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Review
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Lecture 1C: 
Induction

UC Berkeley EECS 70
Summer 2022

Tarang Srivastava
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Announcements!
● Lecture is posted under “Media Gallery” in bCourses

● HW 1 and Vitamin 1  have been released, due Today (grace period Friday)
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~4pm lecture will be up

qoestion 9



What is induction?
Goal in induction is to prove some statement for all natural 
numbers

Principle of Induction

● Base Case: Prove P(0)
● Inductive Hypothesis: Assume P(n)
● Inductive Step: Prove P(n) ⇒ P(n+1)
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] teese getCombined

Direct Proof P⇒On

Assume → One
p



Visual Analogy
Prove all the dominos fall down

● P(0) = “First domino falls”
● P(k) ⇒ P(k+1) “kth domino falls implies that k+1st domino falls”

Even if you had infinite dominos lined up, this method would prove all of them 
will fall down (More on this Week 4).  
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PCs)

5 ≤ a

Base case

[ In ductile step
£ arbitrary
]

g-
_

↓
Hk C- IN

countability



Simple Induction (Example 1)
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Base Case

Inductive Hypothesis
Inductive Step

Base.ca#:n=o 0 = 0¥ > = o ✓
Ind . Hyp . : Assume for some n=k≥o it is true that

◦+ It . . . -1K = KK¥

Indisep : Prove that for rn = KH theclaim holds

I -1 2 + .
. . -1 @+ 1) = @+ 1)Cut2)

2 .

Klute)
+ (KH) =
g-

+ let =

K2-1K -12k-12
=

(KHJCK-12J
2 2

The second equalityPoldi from the inductive hypothesis . Thos, the theorem
holds by induction .



Simple Induction (Example 2)
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We induct on the variable u

BaseC→e : a- 0 3103-0 . This is trivially tree .

Indyp : For n=k assume 31k}- k i.e
. 7g St . = 3g

Itep .

-

.
We wish to show that for n=k -11 316+133-4-11)

let / 13 _ (Rtl ) = 3p PEN

is -1 3h2 -13K + I - Get 1) = 3 p
he
}
-k + 3h2 + 3k# = 3 p

3g + 342+34 From the v0. hyp ,

3(9÷ ) = 3p by Def . it follows that

Ceti 13-6-11 , is divisible BY ☐
p = q+UZtk



Simple Induction (Example 3)
Theorem: Any map formed by dividing the plain into regions by drawing 
straight lines can be properly colored with two colors
Proof:

Lecture 1C -  Slide 7UC Berkeley EECS 70 - Tarang Srivastava

• ka%HEg•%:•azBT••£Baoq
We will induct on the rouser of lies. Lot n # of 465

Boisecase : u=o color the whole plan one colonMMGMLJ-EEGEB.BE#fgT-nd-hYp
: For n=u lines assure it is two colorable ¥-0858BN

Ind#p : consider an arbitrary map with ktl lines
.

Tier, remove one lire from the map . By iv. hyp . this
new map with K lies is two colorable

. They add
back the lie that was removed and flip all tee colors

on one side of the lie .

By constructions all the regions adjacent to tee lie that was
added true different colors .

TM
,
the region that was not flipped

is correct
'colored by hyp- That was flipped, is also two colored by hypothesis since

we just changed the labelYS .



Improving Induction Hypothesis (Example 1)
Theorem: The sum of the first n odd numbers is a perfect square
Improved:
Proof: 
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"

strengthen " l r =p

The sum of the first hood honkers is U2 Its
'

= 22

BEER he 1 = 12 ✓ 11-3-15
'

= 32

It 3-15-12
'

= 42

Ind#Yp : Assure It 3+5-1 .
_ + Ga -1) = U2 i.

¥57k n=k

odds 1+3-1 - . - +(2k- I] = AZ
Indstep : wish to show

1-13-15 -1 .

.
.
+(2k- 1) + Cruel ) = Ceti R R2 -12

= Calf

7-
K2 +24+1 by hyp .

( te -1 If =
✓

☐



Improving Induction Hypothesis (Example 2)
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notes :



What is Strong Induction?
Principle of Strong Induction

● Base Case: Prove P(0)
● Inductive Hypothesis: Assume P(0) and P(1) and … and P(n)
● Inductive Step: Prove P(0) and … and P(n) ⇒ P(n+1)
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Strong Induction (Example 1)
Theorem: Every natural number greater than 1 can be written as a product of one or more primes
Proof: 
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prime factorization

Base Case : n=z . 2 is prime so its prime factorization is just 2
Ind . Hyp : Assume claim holds for all I < n ≤ K

Ind -Step : let n=Kti
Cases : Rtl is prime .

We are done .

Caza : Rtl is composite . Therefore, Fasb C- IN
,
Atl =a•b

since µ -11 > I ⇒ Kasbah
.

Then
, by the Ind . hyp . a au b can

be written as a prodOct of primes .

Thus
,

¥-11 can be written as

a product of a ad b 's primes
.

3



Strong Induction with Multiple Base Cases (Example 2)
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CRT a- 12 ~

Baselios n=l2 12=413 ) -1510> ze=3,y=o ✓

K= 4N -15
]

HERA)t5dYtD
Kel = 4sec' -15g '13 = 4¥ SLC)

<÷ : :: :::]
IS = 410) 1- SCS) 16 __ 12 t.CI

-
-

Ind#Yp : Assure claim holds µ all
'⇐ n.tk

42+5,

T-nd-stepin-n.net ≥ 16
.

Then
,
@+ 1) -4 ≥ 12

4th-14+5
By the Nid . hyp . = Use' -15g

' for some Hy'Ek4 • ]

Ktl = 4N ' -15g
' -14 = 46 ' -11) +Syl .

So
,
then 42+59+4

we can set 2e=se
' -11 and ye yl ☐

HUD-4 ,
kill = Use -15g



Why ever use weak induction? 
Weak Induction ⇒ Strong Induction

If you wanted to you could always use strong induction

It is nicer to only use weak induction if strong induction is not needed. 
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Well-Ordering Principle
The Well-Ordering Principle states that for any non-empty subset of the natural numbers there will 
be a least element. 

Theorem: Every natural number greater than 1 can be written as a product of one or more primes
Proof using WOP: 
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S C- IN ad S =/ { 3
In c- S sit

Hurts u≤ m

was a price factorization

Let s be the set of natural numbers that cannot be written as a

product of primes . Assume for contradiction that S is not empty .

By WOP , s has a least element n .

Cleanly, n is not prime ,g%
't n°00 not be ins
we can write n = a .ba/bEN

.

It follows that a ar b doesn't have a prime factorization .
Without loss of generality CWLOG) say a can't be written as a product
of primes . Notice , since n > I / <a < n

.
This is a contradiction

because then a c- S
,
but we said u is the least element

TWS , s is empty and thorn holds . ☐



Summary
● Simple Induction

○ P(0) and show P(n) ⇒ P(n+1) 
● Multiple Base Cases

○ You may need multiple base cases to prove a statement
● Improve the Inductive Hypothesis

○ Sometimes proving a “stronger” statement is easier
● Strong Induction

○ P(0)  and show P(0) and … and P(n) ⇒ P(n+1)
● Well Ordering Principle

○ For any subset of the naturals there is a least element
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Graph Theory I
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Tarang Srivastava
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Announcements!
● Read the Weekly Post

● Tarang’s OH 4-6p in Woz Lounge (Zoom also–same link as lecture)
○ First 30 minutes for conceptual question

○ Last 90 minutes for reading Note 5 together and question about the note

○ Will not prioritize HW questions. Use regular OH for that. 

● HW 2 and Vitamin 2  have been released, due Thu (grace period Fri)

● We are adding a bit more OH support, but also work on the HW early

● Throughout this lecture definitions will be underlined

Lecture 2A -  Slide 2UC Berkeley EECS 70 - Tarang Srivastava

430
Soda

Hall

u

use Piazza

I



Undirected Simple Graph Definitions
An undirected simple graph G = (V, E) is defined by 
1. A set V of vertices. Sometimes we may call it a node.
2. A set E of edges
Where edges in E are of the form {u, v} for u, v in V and u ≠ v. 
A graph being simple here means no parallel edges
A graph being undirected means there’s no direction to the edges
Examples: 
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-

{aid

-
-

Yes , it's a

µ ↓
EA,B3={ B. A } graph

•- • {UN }

A-y-gp.gg
's

a • • % %
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Directed Graph Definitions
Edges in a directed graph are defined as (u, v). That is, the order of the 
vertices matters. Therefore, (u, v) ≠ (v, u). 
Examples: 
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⇒

A
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Edge and Degree Definitions
Given an edge e = {u, v} we say 

● e is incident to u and v
● u and v are neighbors
● u and v are adjacent
● The degree of a vertex v is the number of incident edges

○ deg(v) = |{v in V | {u, v} in E}|

Examples:
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Summary Questions I
How many nodes in this graph? _____

How many edges? _____

Which vertex has the max degree? _____

Which vertex has the min degree? _____

Which vertices is this edge incident on? ____

What is the sum of the degrees? ______
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"

16 G = 4 4

2

2
58
, 310,4

2

46,11, 39,7,
2

:→
2

32 2 4



Handshake Lemma
Lemma: The sum of the degree of all the vertices is equal to 2|E| 
Proof: 
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A = { 1 , 2,3} I - I

← sizeIAI = 3
2
"

cardinality "

-

Proceed by induction on IEI = in

Base Case : Mio
.

A graph has no edges if all
the vertices are isolated

( ie . no neighbors ) Thos each vertex is degree O

OT . . . to = 26) ✓

Indttyp : Assume claim holds for m=K edges , .
.
. sum of degrees is 2K

t-nd-le.pe. Consider an arbitrary graph 9 with K -11 edges . Remove any
edge from G. The new graph has K edges, and by the iedvtie

hypothesis sum . of degrees is 2K
. Then adding aback the edge

we add 1 degree to each incident vertex . Thus sum ofrdgees
15 now

24+2 = 26+1 ) as desired ☐I# edges



Path, Cycles, Walks and Tours
Deals with Vertices (though may imply things about edges):

Path: A sequence of vertices in G, generally with no repeated vertices.

Cycle: A path in G where the only repeated vertex is the first one and last one.

Deals with Edges (though may imply things about vertices):

Walk: Is a sequence of edges with possible repeated vertex or edges. 

Tour: A walk that starts and ends at the same vertex. 

Eulerian walk: A walk where each edge is visited exactly once. 

Eulerian tour: An Eulerian walk that starts and ends at the same vertex
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Summary Questions II
Give an example of length 3 cycle? ________

Give an example of a path from 2 to 8? _______

Give the longest simple path? ___________

How many connected components are there? ___

Give an example of length 4 tour? __________
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4) 3,11 , 4
/

2,58 '

"

,

'

1431415
,8, 7,10, 1/2/59

murmur

2--710-75-78

-



Connectivity
A graph G is said to be connected if there exists a path between any two 
vertices.

Examples: 

Any graph always consists of a collections of connected components. A 
connected component is a set of vertices in the graph that are connected. 
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Eulerian Tours
Eulerian walk: A walk where each edge is visited exactly once. 

Eulerian tour: An Eulerian walk that starts and ends at the same vertex

Theorem: A undirected graph G has an Eulerian tour iff G is even degree, and 
connected. 

Proof: in the notes
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Summary Questions III
Is there an Eulerian Tour and if so provide a tour? 

________________________________

Why? ___________________

How many connected components now? _____

Connected components now? _____

What about now? _____
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'
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Graph Proof
False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected. 

Proof: We use induction on the number of vertices n ≥ 1

Base Case: There is only one graph with a single vertex and it has degree 0. Thus, vacuously true. 

Inductive Hypothesis: Assume the claim is true for some n ≥ 1

Inductive Step: We prove the claim is also true for n + 1. Consider an undirected graph with n 
vertices and each has degree greater than 1. By the inductive hypothesis, this graph is connected. 
Now add one more vertex x to obtain a graph with (n + 1) vertices. 

Since, the previous graph was connected, and x is connected to some node y then there’s a path 
between x and any other vertex through y, since by definition there’s a path from y to any other 
vertex. Thus, the graph is connected. 
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-
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-
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I
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ntl vetoes and it's connected
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Minimum Edges for Connectivity
Theorem: Any connected graph with n vertices must have at least n-1 edges
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pens⇒ Pinto → •←9.*'••¥•
s⇒

Induction on vertices in =/✗1-

Bisease : U=( ◦ edges 0= G) - I

Indttp : Assume claim holds fer 1≤u≤☒
E-
dega,

T-nd-ste.pe. Consider a connected graph G with u=k+i vertices.
Wwe%¥is

Remove an arbitrary vertex V. Remarry 4 suppose oeous S corroded#"

components . By stroy 1h00AM each conned comport has

µ - l edges, Uz -1 edges .
. . ks-ted-gg.AE ×

we get
__ _

to add back S edges
a-us - i

IEI ≥ K as desk
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Complete Graphs
A graph G is complete if it contains the maximum number of edges possible.

Examples: 
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Trees
The following definitions are all equivalent to show that 
a graph G is a tree. 

1. G is connected and contains no cycles

2. G is connected and has n-1 edges (where n = |V|)

3. G is connected, and the remove of any single edge 

disconnects G

4. G has no cycles, and the addition of any single edge 

creates a cycle
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Tree Definitions are Equivalent
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
Proof: 
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Tree Definitions are Equivalent (cont. )
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
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Bipartite Graphs
A graph G is bipartite if the vertices can be split in two groups (L or R) and 
edges only go between groups.

Examples: 
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Announcements!
● Read the Weekly Post

● We have caught academic misconduct cases

● HW 2 and Vitamin 2  have been released, due Thu (grace period Fri)

● Throughout this lecture definitions will be underlined
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Minimum Edges for Connectivity
Theorem: Any connected graph with n vertices must have at least n-1 edges
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11.9
[ ×

Proceed by story Mdoction on n =/V1

"

⑧ ↑
5=4

Boccie : a- I C) - I = 0 ✓

IndD: Assure claim holds I ≤ n≤ k

Iridslep : consider an arbitrary graph G with n=kH = 1×1 G=(BE]
Then remove any vertex ×

,
call the resulting graph 41=(1/511)

Removing it creates at most deaf 4 connected components : let §EdegY
Denote Ki to be the number of vertices in the ith connected component

↓ edges in 1st connected follows ton Mo , hyp .component we add back
×

1ps
,
, + IEN + .

. . + test "* - 1) + " ' " ↳

I / = /EyesF-
' I = 11=-11-1 .

. . -1 test ≥ @ it . . . + Ks ) - s
# Vetoes

/El = IE
' / + degli≥ K - S +5

<
(Rtl ) - I = R

IEI ≥ K as desired



Complete Graphs
A graph G is complete if it contains the maximum number of edges possible.
Correction: K is for mathematician Kazimierz Kuratowski
Examples: 
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Trees
The following definitions are all equivalent to show that a graph G is a tree. 
1. G is connected and contains no cycles

2. G is connected and has n-1 edges (where n = |V|)

3. G is connected, and the remove of any single edge disconnects G

4. G has no cycles, and the addition of any single edge creates a cycle
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Tree Definitions are Equivalent
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
Proof: 
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=> if no cycles / thr n -1 edges .
Proceed by Motton an # ofwt.rs

Base-casei.net has no edges ✓

Irdyp : Assume the alain for all 1≤n≤ he

Indep : consider a graph with net vertices
.
Renae any arbitrary

vertex v.

Cases : G
'

is disconnected . Appy NO . hyp to each connected component
( similar proof as before )

cases
'

. G
'

is conned
,
ten G

'
has h - l edges by Md . hyp . We

add back × . U can only be Neidert on one edge
otherwise gin G ' is connected / G must

've had a cycle . Twos
adding back 1 edge Tunes K edges for ktl vertices ☐



Tree Definitions are Equivalent (cont. )
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
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⇐ if u -1 edge , ten no cycles

Assure for contradiction G is connected ad has n- l
edges buy7-

also contains a cycle . Then removing an edge from the cycle
N G does not disconnect g. Now#as nivetkos but

only n -2 edges - Which we proved earlier is not possible !

G has no cycles -



Bipartite Graphs
A graph G is bipartite if the vertices can be split in two groups (L or R) and 
edges only go between groups.

G is bipartite iff G is two colorable
Examples: 
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Planar Graphs
A graph is called planar if it can be drawn in the plane without any edges 
crossing. 
Examples:
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Euler’s Formula: v - e + f = 2
Theorem: If G is a connected planar graph, then v - e + f = 2. 
Proof: 
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-

Proceed by induction on e
•

BaseC : e=O
.
f- =L

.
4=1 = 1-0+1=2

✓

Ind_Hyp : Assume claim holds for e=k ↓
Ind.Iep : Consider an arbitrary graph G with e=U -11

✓
Casey : G is a tree . Then f- 1

,
v= ett

Ceti ) - e t I = 2 ✓

Case : G is not a tree , TMG has acyce . Remove an edge from
the cycle . G is still connected and plead . Twsappy no . hyp .
y - ee

'
t f

'
= 2

Aooiy back to edge creates 1 foe
V - Ce 't 1) + ⇐

'

+ 1) = ×- e tf = 2 ✓



Euler’s Formula Corollary: e ≤ 3v - 6 
Corollary: For a connected planar graph with v ≥ 3, we have e ≤ 3v - 6
Proof: 
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Define a side to be te "Ste " of an edge towards a face
.

⇔ :

q_,=q , z face I was 4 sides
• •'

•¥• face 2 has 4 Sides I ¥1 6 side
11

Let Si := nurser of sides for ith face
f

[ Si = Ze
5- 1

Each face has 3 Sides at least

f

Ze = E. si ≥ É } ⇒ Ze ≥ 3f
i= , Ze

≥
512ᵗʰ") ⇒ e ≤ 3×-6 ✓

Ze ≥ 6t3e - 34



K5 is non-planar
Proof:
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Assure for contradiction Ks is planar

✗ = 5 e ≤ 3×-6

e = 5- 4. tz = 10 10 ≤ 3 (5) -6

(E) ' ° & 9 ☐ !



K3,3 is non-planar
Proof:
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this is on the

HW

Assure for contradictor
Hint ! Can you get

a stayer ioqodis
4=6 a ≤ 3×-6 ten
@ = 9 9 ≤ 36J -6 e≤ 3×-6

9 ≤ 12 ? ? ? because *5,3
is bipartite



Kuratowski’s Theorem
Theorem: A graph is non-planar iff it contains K5 or K3,3
Example: 
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4 D hypercube

non-planar
◦



Hypercubes
The vertex set of a n-dimensional hypercube G=(V, E) is given by V = {0, 1}n

i.e. the vertices are n-bit strings. 
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n 0in → 2h vertices you
f-ipad

-

.§ᵗʳʳˢ"→• &

ID 2D
3D↓

Prove every hypercube is bipartite



Number of Edges in Hypercubes
Lemma: The total number of edges in an n-dimensional hypercube is n2n-1

Proof: 
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Announcements!
● Read the Weekly Post

● We have caught people for Academic Misconduct on HW1

● HW 2 and Vitamin 2  have been released, due Thu (grace period Fri)

● No lecture, OH, or Discussions on July 4th
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Hopefully Review (Divides)
Def: We say b|a if there exists some integer k such that a = bk 
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b. a c- 21

Example : I>
/ 51

% = K E Z 17151 ?

K=3

bl 0 51 = 17 . 3

↑
a

↑ ↑
0 = b - O b k



Hopefully Review (GCD)
Def: The greatest common divisor (GCD) of integers a and b is the greatest integer d  such that d|a 
and d|b

Examples:

gcd(4, 2) = 

gcd(12, 16) = 

gcd(51, 17) = 

gcd(15, 16) = 

gcd(7, 96) = 
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ar = may /a-b)
Ocu)

2 212✓ 214 for i irroyelms :

y 4112 4116 i la ?
i l b ?

O 17 1-7 sire 17 is prime god will be 17 or 1

I 1-7 Share no divisors
,
15 and 16 are coprime

0 I 1-7 since 7 is prime , god will be 7 or I



Hopefully Review (Division Algorithm)
Thm: For any two integers a, b. There are unique integers q, r with 0 ≤ r ≤ b such that a = qb + r 
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Std

4M Grade stuff a :-b = q + r

£quotient remainder
17 ÷ 5 = 3 remainder 2

↑ ↑ ↑ ↑ alb ift r=o into
division algorithma b E r



Hopefully Review (Fundamental Theorem of Arithmetic)
Thm: Every integer ≥2 can be uniquely expressed as a product of primes. 
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(Prime factorization)
-

we proved this using inductions ad well ordering principle Lecture K

52 69
/ \

/ \② 26
③ ②/ \

② ④ 69=3.23
52=2.2113

this set of

primes is unique



Mod as an Operation
You can think of mod as just an operation (i.e. what you’re used to in 61A)
x (mod y)
Example: 
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Python

"
%"

13 mod 5 2 3

17 mod 2 = I

17 mod to = 7



Euclid’s (GCD) Algorithm
Thm: Let x ≥ y ≥ 0. Then, gcd(x, y) = gcd(y, x (mod y))

Consider example x = 10, y = 32
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Fact:

-

-

gcd ( 10, 32) = gcd(32, lo Choo 32))
= gcd(32,10)
= gcd( 10, 32 mod 10) = gcd( 10, 2)
= gcd( 2, to mod 2) = gcd(210) = 2 =q

gcdcd, 0)

0 Clog u ) ≈



Mod as an Operation (cont.)
You can think of mod as just an operation (i.e. what you’re used to in 61A)
x (mod y)
Example: 
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Math 113

114

modus

13 mod 5 a 3
m > ⑥

17 mod 2 = I

\ > mod to = , /
equivalence

✓
{0,1 , .

.

. -
m -13

-17 mod -10 = -7=-30 = 13

0, . . . . ,q
.

both to
42 is

- ,> 5%13
(modlo) -17=10*0+3

3 = 3



Mod as a Clock
You can think of adding in mod as just going around a clock. 

We will say all the numbers at the same step of the clock are part of 
the same equivalence class. (ex: …, -11, 1, 13, 25, 37, …)
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Chad 12 ) (residue]
equivalence class

%I to = 1

I t 12 = 13

It 12+12 = 25 u

-

1 I 13 I 25 = .
. .

.

(Mod 12)
How may equiuaoeacksc?I I -11 I -23 = - 35 ( Mod 12)

12



Mod as Space
You can consider doing ALL your arithmetic in a given mod space. 
 
Let’s come up with some rules:
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Math 110
addition/

math 113
subtraction/

lnoltipliaatir/
division Met

slide
Thu : if a _=C Kodos ) b. =D Cnod us)

E% -18--11=-1 (mods) atb I Ctd lmao m )
↓

3-13 I 6=-1 a. b I Cid trod 4)
3+1-2 ) ≥ I

8%-2 =

3 t (2) I

3+3 I 1 (mods )

NFL . > ± 14=-4 Koos )
a

2. 2 I 4 (mod 5) CRT



Inverses (Modular Division)
We can redefine division in regular math, to just being multiplying by inverse. 
The inverse of a is such a number a-1 such that aa-1 = 1
In (mod m) the inverse of a only exists if a and m are coprime (i.e. gcd(a, m) = 1). 

Sometimes we say relatively prime same thing as coprime. 
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[
*"%>° '

5÷z = 5. ± 2's muse is

±
2. { = I

0
5th Grade

% '

± 7 @od 17 )
◦

35=17-2 1-①
5:-.}

5. 5
'

= I @ od 17)

5 . > = 35 = ( (mod 17 ,
5 . 3z

Example Sowiycn Equation Algebra I5m + 3 I > @ od 17 ) 0 } . { = 1
5k -13--3=-7-3

5¥51 = 4.5-
' Lmoo 17)

5C" ) -13=58 Kodi])
↓

K E 4.7 I 28 I.④ Ind 17 )
praefect the
inverse is unique



Let’s Bridge Algebraic Form with Modular Form
a ≡ b (mod m) iff there exists some integer q such that a = mq + b

(GCD Algorithm): Let x ≥ y ≥ 0. Then, gcd(x, y) = gcd(y, x (mod y))
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←
remainder

a= mqtb Grodin)
common ⇐ #divisors ↓

a =
oiqtb[Proof . Suppose d is an arbitrary divisor of both

AI b (modem)
se and y ( dlk oddly) .
By the division algorithm, we can write see qgtr.
Notice, k I r Kody) ,

sire
, ally we brow alley .

Then from lecture IB , we how d / se - qy .
a-qy=r

So
,
dlr . Thus

, My ad secmody) share the sore divisors{since was arbitrary . Namely they be the same GCD
,

u ☐
Also slnwo trot dividers of y ad r one divisors of

ready ,



Extended Euclid’s Algorithm: How to find inverses
Find the inverse of x in (mod y) by finding a, b such that 1 = ax + by
Example 2: x = 7, y = 32
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gcdcn, g) = I gcdcn-D= asetby
/ = art by

5' Lmaoo 32) Sowiy to a ,b gives
Alt . method from in the notes : Goa, find a,y

You the 'Wes?

>( l ) 1- 3210) = > ① f- asetby Cindy)

✗54> (o ) + 32cL ) = 32 ② / E- are -140T

£ intense of se

→ (5) t 3216) = 3. ③ I = an + by Cnodse)

> (g) + zz, , , = }! ⑨
1-= by

y
"

b. Croix)✗ "↳
>(Ss) + 32611) = 33 ③

> (553 + 321-12)=1
? [ Cmod 32) 32-1 (mod 7)

↑ ↑ ↑ ↑ 55=-23 @ od 32 ) 4
" 4027 )

u a y y
↓

-12 Koo 7)
gcdtey 7-1=-23 7.23--161=-140032) 4. 2--8=1 ( mod 7)



Repeated Squaring
How to find xy (mod m) for large exponents. 
Example: 442 (mod 7)

Lecture 2C -  Slide 15UC Berkeley EECS 70 - Tarang Srivastava

Ra = zeta Choon)

(mod ? )
4° = I

442=-432
. 48.4241--4
I 2. 2- 2

42--14112=42--16 = 2 I 8 (mod 7)

(425=44 = 22 = 4
It

(4) = 16=-2

(4)
' •

= y
(4) 32=2



Review
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Announcements!
● Read the Weekly Post

● HW 2 and Vitamin 2  have been released, due Today (grace period Fri)

● No lecture, OH, or Discussions on July 4th
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Repeated Squaring
How to find xy (mod m) for large exponents. 
Example: 442 (mod 7)
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4° -= I
@007 )

442 ≥ 432.48 . 42 ≥ y
32+8+2

4
'

I 4

I 2 . 2- ZI 8=1 @od 7)42=-16 I 2
By-

44=-14212 :-(212=-4
48 = (44 )

≥

= (4)ZI 16=-2

y
'6
z (4812 I 22=-4

432 _=(4
" ) 2=-145 = 16=-2



Recap
● Division Algorithm

● Greatest Common Divisor (GCD) Definition 

● GCD Algorithm: Application and Proof

● Every number has a unique prime factorization

● Mod as a Space: Defined Addition, Subtraction, Multiplication and Division

● Definition of Coprime

● Definition of Inverse and division via multiplying inverse

● Extended Euclid’s Algorithm to find inverse

● Repeated Squaring
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quotient
←
remainder

↓
a) b a= bq + n

gala, g) = godly, se mody )
ext 52= 13.2 . 2

geology ] = 1

antsy = I

asetby = geology)



Bijections
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f- : A → B
flat za

112-7112

Contoepositie : f- for)
" surjectne" ifa= a'

,
ten

f-(a) ≠ fcaj
" injective " " ¥11NOT A

FUNCTION
②
,

✗OF• →
:

pre- image
f- : × Y Inge

⇒☐ ⇒



Bijections Examples
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g is an ihense of f if

gcfcras)=n *se

for> = x2 f : R -7112

neither
fcas = 22 f : IR → ÑU{03

sonjecae

fCnJ= 2x f : IN -71N

Metre

f : A- →B and F is injector fin> = zn f- : IR-7K
IAI ≤ 1131 ihwge zu bijectie

-
-

. . f- is Sonia f(ng=z3- se t:/R→lR
11-1 ≥ IBI

f is biyiectie flo> = 6gurje-tre.tl= /BI Fcc> = ◦
So



A Useful Lemma
Claim: f(x) = ax (mod m) where a and m are coprime is a bijection. 
Restated: The sequence 1a, 2a, 3a, …, (m-1)a is a reordering of the numbers {1, 2, …, m-1}. 
Proof: 
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for> = az @ odin) a adm are coprie

f- :{0,1, . . -1mm-13-7 {0,1, _ . -

,
in-13

.

-

o → i
Assume for contradiction that f is not a bijection . la

→29*7 2
Then , Iggy

c-
room u≠y
S.t. are ay Cnodwi) ⇒ are-ayzolmodm ) '

→ : → :

⇒ 7K Ez are- ay = um ,

since a ad we are

@- 1) a → m - l

coprime they Shae no factors and thus mlcnry)
ace-y )This is a contradiction sire K,yE{ 0,1, . . .> in-13 SO
pm

=k

↑x-y am .

T.ws
, f- is a bijection . [ ↑ integer

no COMM

footer



Existence of an Inverse
Thm: if a and m are coprime, then a has an inverse in mod m
Proof: 
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Goal :

Fx C- modus

are I modh

Consider te sequence from before 19,29
,

. . .

,
Cn-1)9

we know this severe is a bijection to {1,2, .
. . ,
in - I }

if and m are coprime . F some
ya

inte sequence that maps
to ]

T.ws/ya---llnodm ) , y is tier the inverse of a (moon ] .



A Necessary Lemma
Lemma: x and m being coprime is a necessary condition for f(x) = ax (mod m) to be a 
bijection. 
Proof: 
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the existence of an inverse
&

if gcala , un ) > \ then a doesn't have an inverse Lmodus )

prove directly . Let D= gcdca, in> and a has an muse @0dm )

ay I 1 Cmodm ) ⇒ ay = ink -11 KEZ
.

Siree
,
dla and dlm

↑
inverse

we also know dlay and dlmk ⇒ all ay- ma Lec . 113

ay - ma =L This d / I × So, d must be equal to 1 . This

a. and m are coprime .



Inverse is Unique (From Discussion 2C Q3E)
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Suppose se adal are ihdbirses of a nod by

Then, (modus )
are = an

'
II

grease I Naze'
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Kate = Ease
'

ye E k '
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What makes prime numbers so special? 
1. Building blocks of all numbers ← all numbers have a prime factorization

2. Given a prime p any number that’s not a multiple of p is coprime to p

i.e. gcd(x, p) = 1 for all x that is not a multiple of p.

Thus, the inverse always exists in modulo p 
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52 → 2-2-13

Working it mo_dp guarantees that division
a#t always you can't

I divided
✓ 0

, Ppp, Sp Zero!
Galois Field O=p-=2p=

.
Knoop,

"
↳Fcp)

"

mod p



Fermat’s Little Theorem Examples
Thm: For any prime p and any a in {1, 2, …, p-1}, we have ap-1 ≡ 1 (mod p). 
Examples: 46 (mod 7), 442 (mod 7)

Lecture 2D -  Slide 12UC Berkeley EECS 70 - Tarang Srivastava

↳
"2

± ( 4G )
>
(Mod 7)

7 is prime by FLT

I 17 46=-1
4>-1

≤ 46 = I Choo 7) = I

4- 4.4 . 4.4 -4
U W w

106 I

¥ . 2 n 122=-8 = I Choo 7)



Fermat’s Little Theorem Proof
Thm: For any prime p and any a in {1, 2, …, p-1}, we have ap-1 ≡ 1 (mod p). 
Proof:
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19,29 , 3A, . . . .
(p- 1) a is a reordering of 112, ], . . . ,p-1

lao Za . 39 - - - -
- p-Da = I - 2. 3 - a - (p- 1)

1. 2.3 . . . Cp- 1) a a. a -i - a = 1 . 2 . 3 - .
. ( p-D

TFF
1- 2-3.ir#p-uaP-t It.2.si#p-jaP-'

= I Cmodp )



Chinese Remainder Theorem (CRT) Example
Find a x in mod 30 such that it satisfies the following equations
x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 5)
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✗= ( I

idea ! N= a + b + C

AE I @od 2) ✓ BE 0 Cnod 2) ✓ CEO @022) -
a = 0 Llnod 3) ✓ b -= 2 4m00 } ) / CI 0 (mod3) ✓
a = 0 @ od 5) ✓ BI 0 (mod 5) ✓ CI 3 dmods)

✓

Guess : a= 3.5=15 b= 2-5=10 C. = 2.3=6
✓ ①

b= 2-2.5=20 C= 2.3-3 = 18
-

.

x= 15-120+18 53 mod 30 => 23 @02303
→

=2e



Chinese Remainder Theorem
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F
product

Giver hi
, nz, . . . , Uce that are coprime to each other

.

N=ninz . - nq

3- a unique soldtios K C- { 0,1, . . . /
N-13 that satisfies all the

equations ,



gcd(x, y) = ax + by
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Announcements!
● Read the Weekly Post

● HW 3 and Vitamin 3 have been released, due Thursday (grace period Fri)

● HW 3 covers last Wednesday, Thursday and Today’s lecture

● Any topic that’s out of scope in this lecture will be in Orange. 

○ You are not responsible for these topics, they’re just here to give context

○ These topics will be covered in CS170 and CS161

● In this lecture, we will use small prime numbers as examples but in implementation 

we use large prime numbers (256 bits ≈ 1077 or more). 
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Alice and Bob
Alice and Bob wish to send messages to each other privately. 
Eve is able to intercept and read the messages. 
How can Alice and Bob encrypt their messages, so even if Eve intercepts them she cannot 
understand them (i.e. decrypt). 
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Using a Codebook
How can Alice and Bob encrypt their messages, so even if Eve intercepts them she cannot 
understand them (i.e. decrypt). 
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"too few sequences
"

"

repeatable "

Problem : " Bob and Alice

Carol → Oshi have to
agree on

a codebook before "

Co0ebh
-Alice Bob

"
K ↳ 2-4

A- → K "

ABC " > "
KGZ"

B → 5
c → z Z
D → F

i. ↓ "
ABC"

2-→ B
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Public Key Cryptography
Alice generates a Public Key (K), and a corresponding Private Key (k). 
The public key K is known to everyone (including Eve), the private key k is known only to 
Alice. 

Anyone can encode their message using the public key, and send it to Alice. 
Only Alice knows the private key, so only she can decrypt the messages sent to her. 
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Not tile
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Alice publishes this
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EEN = y Eu:= eruption function

Bob Alice

message
: n

y →
Die .
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How does Alice send Daly> = se
a message to Bob } Eve

Bobb creates his own publickey



RSA
Setting up a Public Key
Pick two large primes p and q. Let N = pq

Choose an e that is coprime to the product (p-1)(q-1)

Compute the private key d = e-1 (mod (p-1)(q-1)). 

Announce to the world the public key: K = (N, e) 

Encrypting Messages
Let x be your message. E(.) is the encryption function. Send E(x) = xe (mod N). 

Decrypting Messages

Let y be the encrypted message. D(.) is the decryption function. D(y) = yd (mod N). 

Why does this work?

Decrypting an encrypted message returns original message. D(E(x)) = x 
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Alice does the follow

- -

gcdce,(p-1kg-1 ) ) = ,

☆ Is both to male

poos
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↑
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↑
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Summary Questions
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N e p and q d Private Key Public Key Encryption 
Function

Decryption 
Function x y

Who 
knows

Definition

Pick two large primes p and q. Let N = pq
Choose an e that is coprime to the product (p-1)(q-1)
Compute private key k = d = e-1 (mod (p-1)(q-1)). 
Announce to the world: K = (N, e) 
Encryption: E(x) = xe (mod N). 
Decryption: D(y) = yd (mod N). 

Cait ppl figure out p,q from 14 ? People
Alice, Bobe, Eve

Alice has a public hey
Gye]RSA

Bob is sending a message R

message

eÑ eyelid Alice Alice Alice Everyone Everyone Alice
Bob Everyone

( AfterAlice)

randomly choose
Bob just

e coprime
2 large

D= e-
'

xp
-1) Cq

-D) K= (din) k=(µ, @,
EH -_ see Dlyjnyd

µ= p.gg
°& mod (moon) (mod N ) has a D= F-↳

+◦ µ
, ,>

Primes message



RSA Example
Alice Setting Up Public Key

Bob Encrypting Message                                    Alice Decrypting Message
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Pick two large primes p and q. Let N = pq
Choose an e that is coprime to the product (p-1)(q-1)
Compute private key k = d = e-1 (mod (p-1)(q-1)). 
Announce to the world: K = (N, e) 
Encryption: E(x) = xe (mod N). 
Decryption: D(y) = yd (mod N). 

✓ -
✓

✓

✓

P≥ 7,9=11 N= 7.11=77

e coprime to (7-13111-1)=60 710) t 600) = 60

>(l ) -16010) = 7
e. => D= 43 >C-8) + 604) = 4

>(9) + 60Gt) =3
Public key K = ( N, e) = (77, 2) 7£17) +60 (2) = I

7
"

-= -17=-43 Cnod 60)

ze = 2 : ≥ message yest ☒(g)=D/515=5143 mod 77

E- (us = F- (2) = z
>
mod 77 81 ↓ repeated squaring

>
2
?
= 128 I 51 mod 77 Dly) = 2 = see

9=51



Why does encryption/decryption work?
Thm: For every x in {0, 1, …, N-1},  (xe)d ≡ x (mod N). (i.e. D(E(x)) = x)
Proof: 
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± 1 mod ped= kcp-1)G-1) + I KEK
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"

that need ≤ a mod N ⇒ seed-k mod N

r
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- '"%- ' d -11

- se = ◦ woo N .
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and N= P -

q . If we show that KKCP-' 'G-1) ← I
- K ≤ o Cmodp)

and =-D Cmodq ) then it is I 0 (mod N ) .

We wish to show se
" ""9-1> + '

-✗ = 0 (modp) ;
Cassel : K is a multiple ofp / th p divides both the terms

Caz2 : x is not a multiple/so see { 1,2 . . , P-B mod p

So by FL -1 (KP" )
""">
K - x = o(modD

By CRT this trainer ofF¥F
1M$? se - se ± xx -=o (mod p)

K exists

You can apply the identical argument to q. Thus , we are done .



Why can’t Eve reconstruct the Private Key?
Idea: d = e-1 (mod (p-1)(q-1)), but Eve knows e so why can’t she just find the inverse? 
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Eve doesn't know Lp -1 ) or cq-y cream

Cp - ii.G- 1)

Eve. Ory knows N



Why can’t Eve then figure out p and q? 
Eve knows N so why can’t she figure out p and q using that? 

We showed that every number has a prime factorization. 
That is, given a natural number n there exist a unique set of primes such that n is equal 
to their product. 

Finding this unique set of primes is hard. 

What does it mean for a problem to be hard? 
In this class, we will say that if the best solution is as good as guess-and-check it is hard. 
To find the prime factorization you would have to try every factor for that number. 

Is there a faster algorithm to find the factorization? 
Unsolved Problem. It is possible with Quantum Computer. 
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NP-HARD 65170)

Dvs .

NP Cest>0)

Shor's Algorithm



Why can’t Eve just take the log? 
Eve knows the public key (N, e). Eve then encrypts some message y = xe (mod N). 
Then, the decryption is

x = yd
  (mod N)

So, why can’t Eve just do logy on both sides to leak d the private key?

This is called the discrete-log problem and it is hard. There is no known efficient 
solution for this problem. 
Examples: 
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How easy is it to find large primes? 

If we want a 512-bit prime number
Theorem says there is roughly 1 prime number every 355 numbers. 
For 1024-bit numbers there’s a prime every 710.
Just try random numbers and you will eventually find a prime number

You can efficiently check if a number is prime using the Miller-Rabin test. 
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↓
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Can Even find a match using the encryption function?
If Bob encrypts some message y = xe (mod N). Then, could Eve just plug in x’ into the 
encryption function to find a match?

No! For 256-bit prime numbers that is 2256 it would take you 37 times the age of the 
universe to arrive at a guess for a x’ = x. 
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In Practice Sending Same Message Twice
Notice that since all the numbers are fixed, if you send the same message twice it will be 
encrypted the same way. 

In practice, usually append a counter to the message so each message is unique. 
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You use some derivation of RSA every day
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click
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←



You use some derivation of RSA every day
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← My laptop oblige
,



A little story to end…
In 1977, Rivest, Shamir and Adleman publish the RSA algorithm you learned today. 

Later that year, the British Intelligence Agency (GCHQ) declassify that they had 
developed the exact algorithm secretly in 1973. 

Why do all this? 
● Your company will ask you to make sure their data is secure
● You will want to make sure that your data is secure 
● Most importantly, you have a moral responsibility to do so
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Review
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Announcements!
● Read the Weekly Post

● HW 3 and Vitamin 3 have been released, due Thursday (grace period Fri)

● HW 3 covers last Wednesday, Thursday and Yesterday’s lecture.

● In this lecture, we will use small prime numbers as examples but in implementation 

we use large prime numbers (256 bits ≈ 1077 or more). 
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Finite Fields
Recall, that we talked about mod as a space. 

When operating in a mod p where p is prime, we are working in a finite field. 
A finite field is just a space of numbers, where we can define addition, subtraction, multiplication and 
division for all numbers in that space. 

We will call this finite field a “Galois Field,” denoted GF(p)
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Polynomials in GF(p)
A polynomial in GF(p) 

f(x) = adx
d + ad-1x

d-1 + … + a2x
2 + a1x + a0  (mod p)

is specified by coefficients ad, …, a0
f(x) contains point (a, b) if b = f(a) 

Polynomials over reals: ad, …, a0 ∈ ℜ, use x ∈ ℜ
Polynomials in GF(p) have ad, …, a0 ∈ {0, …, p-1}, use x ∈ {0, …, p-1}

Example: f(x) = 2x3 - 2x 
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a
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Polynomials in GF(p)
A polynomial in GF(p) 

f(x) = adx
d + ad-1x

d-1 + … + a2x
2 + a1x + a0  (mod p)

is specified by coefficients ad, …, a0

f(x) contains point (a, b) if b = f(a) 

The degree of a polynomial is the highest exponent in the 
polynomial

We say that a is a root (or zero) of a polynomial if f(a) = 0

Example: f(x) = 2x3 - 2x 
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Degree d ⇒ at most d roots
Property 1: 
A non-zero polynomial of degree d has 
at most d roots

Examples:
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d+1 points ⇒ unique degree d polynomial
We say a point is a x, y pair where y = f(x) 

Property 2: 
Given d+1 pairs: (x1, y1), …, (xd+1, yd+1) with all the xi distinct, there is a unique polynomial f(x) of degree 
(at most) d such that f(xi) = yi  for 1 ≤ i ≤ d+1

There is a unique degree d polynomial that goes through a given set of d+1 points

Example:
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Implication of Properties on a Line
Suppose we have some linear polynomial

f(x) = a1x + a0

Property 1 says that if the line isn’t just f(x) = 0 (x-axis) then it has at most 1 root. 
Property 2 says two points define a line. 

How to find a line that goes through a given two points:
Example: (1, 2) and (3, 4) 
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Polynomial Equivalence
We state that two polynomials f and g are equivalent if for all x in GF(p), f(x) = g(x) 

You can also show two polynomials are equivalent if they have the exact same 
coefficients.

Examples in GF(7):
f1(x) = x + 1
f2(x) = 8x + 1
f3(x) = x + 8
f4(x) = x7 + 1
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Polynomials from Points via Interpolation
Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, 0)
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Polynomials from Points via Gaussian Elimination
Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, 0)
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Proving Property 2 
Property 2: Given d+1 pairs: (x1, y1), …, (xd+1, yd+1) with all the xi distinct, there is a unique polynomial f(x) 
of degree (at most) d such that f(xi) = yi  for 1 ≤ i ≤ d+1
“d+1 points, define a unique degree d polynomial”

1. We showed the existence of  a polynomial via interpolation
2. We need to show uniqueness

Proof for uniqueness: 
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Long Division
It is possible to divide polynomials. That is dividing p(x) by q(x)  results in 

p(x) = q’(x) q(x) + r(x)
Example: p(x) = x3+x2-1 and q(x) = x - 1
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Proving Property 1 
Property 1: A non-zero polynomial of degree d has at most d roots
We will prove this by proving these two other claims. 

Claim 1: If a is a root of a polynomial p(x) with degree d ≥ 1, then p(x) = (x-a)q(x) for a polynomial q(x) 
with degree d - 1

Claim 2: A polynomial p(x) of degree d with distinct roots a1, …, ad can be written as 
p(x) = c(x-a1)...(x-ad) where c is just a number. 
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Proving Property 1 with Claim 1
Property 1: A non-zero polynomial of degree d has at most d roots
Claim 1: If a is a root of a polynomial p(x) with degree d ≥ 1, then p(x) = (x-a)q(x) for a polynomial q(x) 
with degree d - 1
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Proving Property 1 with Claim 2
Property 1: A non-zero polynomial of degree d has at most d roots
Claim 2: A polynomial p(x) of degree d with distinct roots a1, …, ad can be written as 
p(x) = c(x-a1)...(x-ad) where c is just a number. 
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Secret Sharing 
There is a code that can be used to launch nuclear weapons. 
We don’t want this code to be accessed unless k of the total n military generals agree. 

How do we solve this? 
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Secret Sharing (cont.)
There is a secret code that can be used to launch nuclear weapons. 
We don’t want this code to be accessed unless k of the total n military generals agree. 

How do we solve this? 

1. Construct a degree k-1 polynomial. Call it p(x). 

2. Encode the secret code as p(0) = “secret code”

3. Give each general a point that p(x) contains. 

a. i.e. General #1 gets (1, p(1)). General #2 gets (2, p(2)). So on… 

4. When any k general agree. They can share their points and they will have k points to 

reconstruct a degree k-1 polynomial. Then, they just plug in p(0) to find the secret.  
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Example of Secret Sharing
Tarang wants to set up a system that if any 3 of Michael, Jingjia, Nikki, Christine, Jet, Colby or 
Korinna agree then the midterm solutions will be released immediately. 
Suppose the secret code to the solutions is “6”. 

What degree polynomial does Tarang need to construct? __________

How many points do we need to generate? __________
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Example of Secret Sharing (cont. )
Suppose Jingjia, Nikki and Christine agree to release the solutions before the midterm. How would 
they do it? 
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Counting Polynomials
Assume for all these questions we’re working in GF(p)

How many unique degree at most k polynomials are there? 

How many exactly degree k polynomials are there? 

If we wish to find a degree 5 polynomial and we know only 3 points how many options 
do we have for the polynomials that currently go through our 3 points? 
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Lecture 3C: 
Error Correction

UC Berkeley EECS 70
Summer 2022

Tarang Srivastava
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Announcements!
● Read the Weekly Post
● HW 3 and Vitamin 3 have been released, due Today (grace period Fri)
● Tarang’s Last Lecture, Michael will begin starting next week
● Midterm is 7/15 (6-8p)
● Midterm Scope

○ Notes: 1-11 
○ HW: 1-4
○ Lectures: 1A-4B
○ Discussions: 1A-4B
○ Topics: Up to and including countability. (Computability will not be on the midterm)

● Midterm format will be different from previous semesters. More proofs. 
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Review
Property 1: A non-zero polynomial of degree d has at most d roots
Property 2: Any d+1 points define a unique degree d polynomial

Claim 2: A polynomial of degree d with roots a1, …, ak can be written as p(x) = c(x-a1)...(x-ak). 

From Discussion 3B: 
if f and g are degree x and degree y then
● f + g is at most degree max(x, y)
● f • g is at most degree x + y
● f / g is at most degree x - y
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Review (cont.)
Secret Sharing:
Problem: We need any k out of n people to agree to unlock some code. 
Solution: 

1. Create a degree k-1 polynomial p(x) 
2. Encode the secret in the polynomial (p(0) = “secret”). 
3. Give a point that the polynomial contains to each person (generate n points)
4. Any k points can be used to reconstruct the degree k-1 polynomial p(x)
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Review of Gaussian Elimination
Why do d+1 points define a degree d polynomial uniquely? 

A degree d polynomial has d + 1 coefficients: 

f(x) = adx
d + ad-1x

d-1 + … + a2x
2 + a1x + a0  (mod p)

So, we need d + 1 equations to solve for d + 1 unknowns. 
We get d + 1 equations by plugging in the d + 1 points. 
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Erasure Errors
Send some message across an unreliable channel. 
The channel randomly drops k packets.

How can we recover our original message? Polynomials! 

We want to encode our message into a polynomial, and then generate k extra packets.
Then with any n received packets we can reconstruct the polynomial and get the 
original message. 

Construct a polynomial of degree ________    to protect against k erasures.  
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Bob sends message with erasure protection 
Bob wants to send the message “3 1 5 0” to Alice. 
Bob knows that at most 2 packets will drop when sending the message to Alice. 
n := message length (4) k := maximum erasures (2)
Message “3 1 5 0” become points “(1, 3)” “(2, 1)” “(3, 5)” “(4, 0)”
Find a degree 3 polynomial that goes through these points in GF(7) 

What are the extra points Bob generates? 
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Alice receives message with erasure errors

Alice receives the points (1, 3); (3, 5); (4, 0); (5, 6). How can Alice reconstruct the polynomial? 
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General Errors
Send some message across a noisy channel. 
The channel randomly changes (corrupts) k packets 

How can we recover our original message? 

This is much harder that Erasure Errors because…
1. locate where the error occurs
2. recover the correct value 

Erasure Errors: Send n + k packets to protect against k erasures
General Errors: Send n + 2k packets to protect against k corruptions. 
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Solution: Berlekamp-Welch
Message: m1, …, mn (length = n)
Sender:

1. Form degree n-1 polynomial p(x) where p(i) = mi
2. Send p(1), …, p(n + 2k)

Receiver:
1. Receive r1, …, rn+2k 
2. Solve n + 2k equations, q(i) = e(i) ri to find q(x) = e(x)p(x) and e(x)
3. Compute p(x) = q(x)/e(x)
4. Compute p(1), …, p(n) to get original message

Here ri are the received points possibly with errors. 
p(x) is the original polynomial the sender used, receiver doesn’t know yet
e(x) is an error locator polynomial. e(x) = (x-e1)...(x-ek) where ei is the index where the error occurs
e(x) = 0 when you plug in a x value where error occurs. Receiver doesn’t know e(x) yet. 
q(x) = e(x)p(x). So, we find q(x) and e(x) to get p(x). 
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Berlekamp-Welch (cont.)
Receiver:

1. Receive r1, …, rn+2k 
2. Solve n + 2k equations, q(i) = e(i)p(i) = e(i) ri to find q(x) = e(x)p(x) and 

e(x) is error locator polynomial. e(i) = 0 when there is an error in 
index i

3. Compute p(x) = q(x)/e(x)
4. Compute p(1), …, p(n) to get original message

What is the degree of q(x)?_______ How many unknowns? ________

What is the degree of e(x)? ________ How many unknowns?______

We have _________ unknowns in total and ________ equations
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Bob sends message with corruption protection 
Bob wants to send the message “3 0 6” to Alice. 
Bob knows that at most 1 packet will be corrupted when sending the message to Alice. 
n := message length (3) k := maximum corruptions (1)
Find a degree 2 polynomial that goes through these points in GF(7) 

What are the extra points Bob generates? 
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Alice receives message with corruption errors

How can Alice find where the error is and fix it? 
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Alice receives same message with NO corruption errors

Will Alice still get the same correct answer? 
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p(x) is unique from Berlekamp-Welch
Thm: Any solution to Berlekamp-Welch will result in the same final p(x) 
Proof: 
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p(x) is unique from Berlekamp-Welch
Thm: Any solution to Berlekamp-Welch will result in the same final p(x) 
Proof: 
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