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Continuous sample space




Probability mass function (PMF)

* For discrete random variable X, probability mass function
(PMF)denoted as py(x) = P(X = x) captures the
probabilities of values that X can take.

* Lxbx(x) =1



Probability density function (PDF)

* A random variable if called continuous if there is a nonnegative
function fy called probability density function (PDF) of X such
that

P(X € B) = [, fx(x)dx for every subset B c R.

* The probability that the value of X falls with in an interval is

Pla<X<b)= fafx (x)dx
b
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Probability density function (PDF)
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* The probability of X taking a single value is O

P(X=a)={flnck <a) >~JZ\&\X)0{>«:0
P (ackeb)=F(ackeh) =Placx<b) >F(a<g<h)

* Normalization property

J: e (%) dx = P(—>0 <xyewn) = l



Example 1: Continuous uniform random variable

Spinning a wheel of fortune. The arrow continuously takes value
between [0, 1]. Observe the number that the arrow points at.

o Cc f oexg|
{—X b‘) =
O ¢ O W
K
A = f jcx\x)o(x
—00
-?o’r on Sﬂlwvox( intervol
l —
pa § {ka):< =

, o




Example 2: Piecewise constant PDF

Alice walks to class. It takes 15-20 min if it’s sunny; it takes 20-25
min if it’s rainy. Walking time being equally likely in each case. If in
this city, the probability of a day is sunny is 2/3; a day is rainy is 1/3.
What’s the PDF of walking time X A POFX )
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General plecevvlse constant PDF




Example 3: A PDF can take arbitrarily large value

Consider a random variable X with PDF

1
if0<x<1
fx(x) = a+/x
0 otherwise
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Summary of PDF

* A continuous random variable X with PDF fy

fx(x) =20 Vx

foofx(x)dx =1
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ForBc R, P(X € B) = [, fx(x)dx



Expectation

The expected value or expectation or mean of a continuous
random variable X with PDF fy is defined by

00 = [ x ey



Variance

The variance of a continuous random variable X with PDF
fx is defined by

Var(X) = E(X?) — E(X)? :
=f x° fx(x)dx—(j xfx(x)dx)
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Example 4: mean and variance of the uniform random variable

Consider a uniform pdf over an interval [a, b]
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Exponential Random Variable x>0

* An exponential random variable has a PDF of the form
—Ax :
fX(x) — { Ae ifx >0

0 otherwise
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Example 5.

ime till a small meteorite first lands anywhere in a desert is modeled as an
exponential r.v. with mean of 10 days. It is currently might night, what is the
probability that a meteorite first lands between 6am to 6pm of the day?
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Cumulative density function (CDF)

The CDF of a centisfimausrandom variable X with PDF fy is
denoted as Fy

VX,

2 px (k) if X is discrete
Fy(x) = P(X' <\x) = xksx
| f fx(t)dt if X is continuous
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* Fx(x) is monotonically nondecreasing.
e if x < ythen Fx(x) < Fx(y).

e Fy > 0asx > —oo, Fy > 1lasx —» oo, —
* If X is discrete then Fy(x) is a piecewise constant function of x.

* If X is continuous then Fy(x) is a continuous function of x.

* |If X is discrete and takes integer values, then PMF and the CDF can be obtained

by summing or differencing,
» Fx(k) = X _oopx(k), px(k) =P(X<k)-PX<k-1)=Fx(k)— Fx(k—1)

* |f X is continuous, then PDF and the CDF can be obtained by integration or
differentiation,

dFy

« Fx(x) = ffoofx (B)dt, fx(x) =—=(x).






