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Probability density function (PDF)

* A random variable if called continuous if there is a nonnegative
function fy called probability density function (PDF) of X such
that

P(X € B) = [, fx(x)dx for every subset B c R.

* The probability that the value of X falls with in an interval is
a
Pla <X <bh)= f fx (x)dx
b
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Cumulative density function (CDF)

The CDF of a random variable X with PDF fyx (or PMF py) is

denoted as Fy

Vx,
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Geometric and exponential CDFs’
Exponential PDF ' Geometric PMF
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Geometric and exponential CDFs  x>»
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Joint distribution: Joint PDF
(%4)

* A joint density function for two continuous random variables X, Y is a
function f—> R, such that

* fis nonnegative, fxy(x,y) =0,Vx,y € R
+ Totalintegralis 1, [~ [ fyy(x,y) dx dy =1

= F =

* The joint distribution of two continuous random variables X, Y is given
by, Va < b,c < d

d b
Pla<X<bc<Y<d)= f f fxy(x,y)dx dy .
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Joint distribution: Marginals

* The marginal PDF fy of

fX(}{) = f_ O:Ofx;y(X; y)dy ?(X/Y;ﬂ)

e Similarly

fY(J) = f_oofx,y(x;)’)dx



Joint distribution: Joint CDFs

e If X, Y are two random variables associated with the same
experiment, we define their joint CDF by

Fyy(x,y) =PX <x,Y <y)

* The joint PDF of two continuous random variables X, Y is fy y, then

X y
Fxy(x,y) =PX <x,Y <y) = f f fxy(x,y)dx dy.
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* Two random variables X, Y are independent if the event a <
X<bandc <Y <d areindependent foralla < b,c < d.
Pa<X<bc<Y<d)=Pa<<X<bPla<X<b)

)

* The joint density of independent random variables X, Y is the
product of the marginal densities

fX,Y(x» y) = fx()fy(y)
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Example 1. 2D uniform PDF! (== @

Romeo and Juliet have adate-at a given time and each will arrive at the meeting place with
a delay between 0 and 1 hour,/Let X, Y dente the delays of R and J respectively. All pairs of
delay (x,y) are cely. The first e arrive will wait 15 min and leave if the other

~ hasn’t arrived. What'’s the probability that theymeet.
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Example 2. )

* The joint PDF of random is a constant c on the
set S in figure, and 0 outside, Find the value of c and the marginal
PDFs of Xand Y § vy =c
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Normal random variable

(normal distribution, Gaussian distribution)

e A continuous random variable X is normal or Gaussian if

the PDF is in the form y
2
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Normal random variable - -
(normal distribution, Gaussian distribution)
X ~N(0o1)

+ A continuous random variable X~V uwya?),a,b #0,Y =
aX+b. ThenY~N(ap + b,a*c*)
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CDF of standard normal

* CDF of V'(0,1) standard normal is denot

IP’(Y<y)— P(Y <y) ===
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Sum of i.i.d. Normal

¢ Let X~N(0,1),Y~N(0,1),X LY.Leta,b € R be constant.
Then Z = aX + bY~ N (0,a? + b?)

* A general case



Central Limit Theorem (CLT)

Let X;, X,, ..., X,, be a sequence of iid random variables with
S(Xp) = p, Var(X;) = o° E(G)=>M wn—>v

C—

wie)) E(Zy) = 0,Var(Z,) = — =1

The CDF of Z,, converge to standard normal CDF

limP(Z,, < z) — ,Vz
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Normal approximation based on CLT

———

Let X{, X,, ..., X,, be a sequence o‘ N ariables with
(X)) =u, Var(X;) = o?. Ifnis Iarge S, < ¢) dan be

approximated by treatmg S, as if it were normal

1. Calculate the mean np and the variance no* of S,

/c-nu

2. calculate the normalization value/z =

3. Use approximation P(S, < c) ’

where ®(z) is available e from standard normal CDF table.

(z-score)




Fxample 3. Polling

We want to find out the value p representing the fraction of people
supporting candidate A in a city.
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Example 3. Polling & (140 = © 17

How many people we need to interview if we wish to estimate
within accuracy of 0.01 with 95% probability.
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Conditioning

* Two random variables X, Ywith join PDF fy . For any fixed
y with fy,) > 0 the conditional PDF of X givenY = y is

defined by oY)
xy(X, Y
frv)

fX|Y(xb’) =



fxy(x,y)

e iy
Conditioning frar (xly) = =23
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area of slice =
height of marginal

density at z slice through

density surface

area of slice =
height of marginal

slice through density at y

density surface
for fixed y

| Renormalizing slices | Renormalizing slices
for fixed z gives for fixed y gives
conditional densities conditional densities

for Y given X = z. for X given Y=1y.




Approximation of binomial

* When p is small, n is large, binomial is best approximated
by poisson distribution

* When n is large, p is not very small, binomial is best
approximated by normal distribution

* Here is a good illustration:
https://math.stackexchange.com/questions/3278070/app
roximation-of-binomial-distribution-poisson-vs-normal-
distribution



https://math.stackexchange.com/questions/3278070/approximation-of-binomial-distribution-poisson-vs-normal-distribution

n=1000p=0.04

0.20
0.08

0.05}
0.15 .

0.04f

0.10 .
0.02

_ 0.02|
0.05

0.01}

0.00 0.00f .

0.025
0.04 .

0.020
0.02

0.015

0.02

0.010

0.01 _
0.005

0.00 0.000

60 80 100 120 140
® Original (Binomial)

«  Poisson approximation https://math.stackexchange.com/questions/3278070/approximation-
—— Normal approximation of-binomial-distribution-poisson-vs-normal-distribution
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