Estimation: LLSE
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Uniform distribution

 X~Ula,b]

e E(X) = (b+a)/2

e E(X"2) = (an2+ab+b”2)/3
* Var(X) = (b-a)%/12
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Height of the person who sits next to you

The distribution of male and female heights Our World

The distribution of adult heights for men and women based on large cohort studies across 20 countries in North America, Europe,
East Asia and Australia. Shown is the sample-weighted distribution across all cohorts born between 1980 and 1994 (so reaching
the age of 18 between 2008 and 2012).

Since human heights within a population typically form a normal distribution:

— 68% of heights lie within 1 standard deviation (SD) of the median height;

- 95% of heights lie within 2 SD.

in Data

Female median height
164.7 cm (5ft 5in)

Male median height
178.4 cm (5ft 10in)

VWomen

68% of female heights lie between
157.6 cmand 171.8 cm
(5ft 2in and 5ft 7in)

68% of male heights lie between
170.8 cm and 186 cm
(6ft 7in and 6ft 1in)

95% of female heights lie between
150.6 cmand 178.9 cm
(4ft 11in and 5ft 10.5in)

95% of male heights lie between
163.2 cm and 193.6 cm
(5ft 4in and 6ft 4in)

~2'sD ~1SD +1SD

-28D +28D
150.6 cm 157.6 cm 163.2 cm 170.8cm 171.8cm 178.9cm 186 cm 193.6 cm
(4t 11in) (5ft 2in) (5ft 4in) (5ft 7in) (5t 7.5in) (5ft 10.5in) (6ft 1in) (6ft 4in)

Height —>

Note: this distribution of heights is not globally representative since it does not include all world regions due to data availability.

Data source: Jelenkovic et al. (2016). Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts.
This is a visualization from OurWorldinData.org, where you find data and research on how the world is changing. Licensed under CC-BY by the author Cameron Appel.

https://ourworldindata.org/human-height#distribution-of-adult-heights



Mean squared error (MSE)

 We want to estimate value of a random variable, in absence
of observations. All we know is the distribution of Y. Find a

good estimator.

* How good an estimator is?
MSE =

\

(Y —9)%)

* The optimal estimator of Y is the one minimizes MSE.
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Heigkrwt of the person who sits next to you
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* Now we have observation of this person’s welght
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Mean squared estimator

* A pair (X,Y) of random variables Witmstrm

* Generally, the mean squared estimation error associated with an
estimator g(X) is defined as

MSE = ((Y —\g(X))Z)ﬁ

o [ ((Y — g(X))Z) is minimized when g(X)={ *ZY\X)




Example 1.

Let Y be uniformly distributed over the interval [4, 10] and
suppose that we observe X with some random error W. In

particular, we observe the value of random variable
X=Y+W

Assume that noise W is uniformiy distributed over interval [-1, 1]
and independent of Y.
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Linear least squared estimation

The LLSE of Y given X, denoted by LY |X ] is the linear function
[ g(X )=a+ b)ithat minimizes ’j’

w=E((Y —a~ bX)?) <
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Example 2.

Consider discrete joint distribution of X and Y

E)=2 B =28 .
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Linear regression  how boyesia

For X and Y, We observe K samples (X;,Y7) ... Xx, Yx). Y, = a + bX,, is the guess
of Y,, given X,,.

We want to find the value a and b to minimize the mean squared error

K
1 2
- = EZ(Y]( — a— ka)
k=1

Linear regression of Y over X is

cov(X,Y)
var(X)

1 1
Where E(Y) = - Xi=1 Yi, E(X) = - Xi=1 X,

Y =a+bX =E() +

(X — E(X))
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Linear regression converge to LLSE

For X and Y, We observe K samples (X;,Y;) ... (Xg, Yr).

Assume that samples are i.i.d. As sample number increases,
the linear regression approaches LLSE of X, Y.




Example 3

Hx)=0o E{)=v
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(X, Yn)




Quick run through of probability

 Sample Space
 Random variable (discrete and continuous), function of r.v.

e distributions:

* Uniform, Bernoulli, Binomial, Geometric, Poisson, Exponential, Normal,
Plecewise constant ...

* Joint, marginal, conditional
* Bayes’ rule
* Expectation (conditional expectation)
* Variance, covariance, correlation, Independence
* Inequalities, WLLN, CLT
* Markov Chain
* MSE, LLSE formula



Final Tips

* Make use of cheat sheet
* Review definitions
* Easy points are easy to lose (silly mistake eats points..)

* Translate the question, statement or the quantity to find into
math symbols

* Make valid assumption and write it down

* If you get stuck on one thing for too long, move on
e z-score will help

* Be kind to your TA and ask for their tips
* Be honest and be proud




