Estimation: LLSE

Aug 8, 2022

Uniform distribution

- X~U[a,b]
- E(X) = (b+a)/2
- $E(X^2) = (a^2+ab+b^2)/3$
- $Var(X) = (b-a)^2/12$

- · Final logistics on piazza
- · email cs70 staff @berkeley.edu for admin issup
- · Contst eval (80%)
- · DSP long exam
- · cheat sheet: 2 lettersize hand written
- · OH today
- · schedule.

Height of the person who sits next to you

Mean squared error (MSE)

- We want to estimate value of a random variable, in absence of observations. All we know is the distribution of Y. Find a good estimator.
- How good an estimator is?

$$MSE = \mathbb{E}((Y - \hat{y})^2)$$

The optimal estimator of Y is the one minimizes MSE.

$$MSE = IE(Y^{2} + \hat{y}^{2} - 2\hat{y}Y) = IE(Y^{2}) + \hat{y}^{2} - 2\hat{y}E(Y)$$

$$= Var(Y) + E(Y^{2} + \hat{y}^{2} - 2\hat{y}E(Y)$$

$$\frac{dMSE}{d\hat{y}} = 2\hat{y} - 2E(Y) = 0$$

$$\Rightarrow \hat{y} = E(Y)$$

MSE =
$$\mathbb{E}(Y-\mathbb{E}(Y)^2) = Var(Y)$$

Height of the person who sits next to you

estimator
$$g(E)$$

• Now we have observation of this person's weight.

$$MSE = \mathbb{E}(1Y - g(\mathbf{z}))^{2} | \mathcal{E}) = \mathbb{E}(Y^{2} + g(\mathbf{z})^{2} - 2g(\mathbf{z})Y | \mathcal{E})$$

$$= Var(Y^{2}|\mathcal{E}) + \mathbb{E}[Y|\mathcal{E})^{2} + g(\mathcal{E})^{2} - 2g(\mathcal{E})\mathbb{E}(Y|\mathcal{E})$$

$$\frac{dMSE}{d(g(\mathbf{z}))} = 2g(\mathcal{E}) - 2\mathbb{E}(Y|\mathcal{E}) = 0$$

Mean squared estimator

- A pair (X,Y) of random variables with joint distribution
- Generally, the mean squared estimation error associated with an estimator g(X) is defined as

$$MSE = \mathbb{E}\left(\left(Y - g(X)\right)^2\right)$$

• $\mathbb{E}\left(\left(Y-g(X)\right)^2\right)$ is minimized when $g(X)=\mathbb{E}(Y|X)$.

Example 1.

Let Y be uniformly distributed over the interval [4, 10] and suppose that we observe X with some random error W. In particular, we observe the value of random variable

$$X = Y + W$$

Assume that noise W is uniformly distributed over interval [-1, 1] and independent of Y.

$$Y \sim U[4,10]$$
 fy(y)= $\begin{cases} 6 & y \in [4,10] \\ 0 & 0.W \end{cases}$ condition on $y=y$ $E=y+W \sim U[y-1, y+1]$ \in joint PDF of E,Y is

$$f_{\text{EY}}(x,y) = f_{\text{EY}}(x,y) f_{\text{Y}}(y) = \int_{0}^{\frac{1}{2}} \frac{1}{2} z^{-\frac{1}{2}} if y \in \{4,0\} \text{ and } x \in \{y+y+1\}$$

$$Var(U(a_1b)) = \frac{b-a^2}{12}$$

$$\hat{y} = g(X)$$
 is $\not\models (Y(X))$
 $x \in (S(9)), Y(X) \sim u(X), x+1)$
 $x \in (S(S)), Y(X) \sim u(A, x+1) \leftarrow$
 $x \in ((G(1)), Y(X)) \sim u(X-1, (0))$
 $\not\models ((G(X)) \mid X) = Uor(Y(X))$

MSE

for X=3, for sure we know Y=4

Linear least squared estimation

The LLSE of Y given X, denoted by L[Y|X], is the linear function g(X) = a + bX that minimizes $\mathbb{E}((Y - a - bX)^2) \leftarrow$ $\mathbb{E}((Y - a - bX)^2) \leftarrow$

$$IMSE = IE(Y^2 + a^2 + b^2 E^2 - 2aY - 2bYE + 2abE(ZY) + 2ab(E(ZY) + 2ab(E(ZY$$

$$\frac{dmsE}{da} = 2a - 2E(Y) + 2b(E(X)) = 0$$

$$\frac{dmsE}{da} = 2b(E(X^2) - 2E(XY) + 2a(E(X)) = 0$$
(2)

$$\alpha = E(\lambda) - p(E(\Sigma))$$

$$b(\underline{\mathbb{H}(\mathbb{Z}^2)} - \underline{\mathbb{H}(\mathbb{Z})^2}) - (\underline{\mathbb{H}(\mathbb{Z}^1)} - \underline{\mathbb{H}(\mathbb{Z}^1)}) = 0$$

$$var(\underline{\mathbb{X}})$$

$$var(\underline{\mathbb{X}})$$

$$b = \frac{\text{Cov}(\mathcal{E}, Y)}{\text{Var}(\mathcal{E})} \quad a > \text{IE}(Y) - \frac{\text{Cov}(\mathcal{E}, Y)}{\text{Var}(\mathcal{E})} \text{IE}(\mathcal{E})$$

$$\widetilde{y} = UY|\Sigma J = g(\Sigma) = \alpha + h \Sigma = IE(Y) - \frac{cov(\Xi,Y)}{Var(\Sigma)} E(\Sigma) + \frac{cov(\Xi,Y)}{Var(\Sigma)} \Sigma$$

$$= IE(Y) + \frac{cov(\Xi,Y)}{Var(\Sigma)} (\Sigma - IE(\Sigma))$$

Example 2.

Consider discrete joint distribution of X and Y

$$E(X) = 3 \quad E(A) = 5.2$$

$$Var(8) = 11 - 3^2 = 2$$

$$\hat{Y} = L(Y|X) = 2.5 + \frac{0.9}{2}(X-3)$$
= 1.15 + 0.45 X

correction: E(z) = 3.

$$E(Y) = \frac{3}{15} + \frac{3}{3} + \frac{3}{5} + \frac{4}{5} = \frac{39}{15} = 2.6$$

$$|E(E^2) = \frac{3}{15}(1^2 + 2^2 + 3^2 + 4^2 + 5^2) = 11$$

(E(XY) = [5(1x1+2x1+1x2+2xx2+3xx2+4xx2+2xx2

+ 1×3+2×3+3×3+4×3+6×3

$$var(8) = 11 - 9 = 2$$
 Cov(8,4) = 8,4-7.9 = 0.6

Linear regression non boyesian.

For X and Y, We observe K samples $(X_1, Y_1) \dots (X_K, Y_K)$. $\widehat{Y_n} = a + bX_n$ is the guess of Y_n given X_n .

We want to find the value a and b to minimize the mean squared error

$$\sum_{k=1}^{K} (Y_k - a - bX_k)^2$$

Linear regression of Y over X is

$$\widehat{Y} = a + bX = \mathbb{E}(Y) + \frac{cov(X,Y)}{var(X)}(X - \mathbb{E}(X))$$

Where
$$\mathbb{E}(Y) = \frac{1}{K} \sum_{k=1}^K Y_k$$
, $\mathbb{E}(X) = \frac{1}{K} \sum_{k=1}^K X_k$,

$$var(X) = \frac{1}{K} \sum_{k=1}^{K} (X_k - \mathbb{E}(X))^2, cov(X, Y) = \frac{1}{K} \sum_{k=1}^{K} X_k Y_k - \mathbb{E}(X) \mathbb{E}(Y)$$

sample vaniance

somple covariance

Linear regression converge to LLSE

For X and Y, We observe K samples $(X_1, Y_1) \dots (X_K, Y_K)$. Assume that samples are i.i.d. As sample number increases, the linear regression approaches LLSE of X, Y.

by UN

Example 3

$$|E(x) = 0 \quad E(Y) = 0$$

$$|E(x) = \frac{1}{2} \quad E(xY) = \frac{1}{2}$$

$$|E(x) = \frac{1}{2} \quad cou(xY) = \frac{1}{2}$$

$$|F(x) = \frac{1}{2} \quad cou(xY) = \frac{1}{2}$$

$$|F(x) = \frac{1}{2} \quad cou(xY) = \frac{1}{2}$$

$$|F(x) = \frac{1}{2} \quad cou(xY) = \frac{1}{2}$$

Example 4

$$\mathbb{E}(\mathbb{Z}^2) = 0 \quad \mathbb{E}(\mathbb{Y}) = 0$$

$$\mathbb{E}(\mathbb{Z}^2) = \frac{1}{4} \left(1 + 0 + 0 + 1 \right) = \frac{1}{2} \quad \text{Uorr}(\mathbb{Z}) = \frac{1}{2}$$

Quick run through of probability

- Sample Space
- Random variable (discrete and continuous), function of r.v.
- distributions:
 - Uniform, Bernoulli, Binomial, Geometric, Poisson, Exponential, Normal, Piecewise constant ...
 - Joint, marginal, conditional
- Bayes' rule
- Expectation (conditional expectation)
- Variance, covariance, correlation, Independence
- Inequalities, WLLN, CLT
- Markov Chain
- MSE, LLSE formula

Final Tips

- Make use of cheat sheet
- Review definitions
- Easy points are easy to lose (silly mistake eats points..)
- Translate the question, statement or the quantity to find into math symbols
- Make valid assumption and write it down
- If you get stuck on one thing for too long, move on
 - z-score will help
- Be kind to your TA and ask for their tips
- Be honest and be proud

